期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第11期 doi: 10.1016/j.eng.2021.10.001

大鼠脊髓发育过程中时序转录组的发育时间模式和分子网络特征

a Department of Human Anatomy and Histology and Embryology, Medical College, Soochow University, Suzhou 215123, China
b Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
c Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

收稿日期: 2019-08-23 修回日期: 2020-03-18 录用日期: 2020-06-24 发布日期: 2021-10-06

下一篇 上一篇

摘要

目前对胎盘哺乳动物脊髓发育的分子网络特征我们知之甚少。这些特征对深入理解与再生相关的重要生物过程和组织工程研究非常必要。现在,借助于从胚胎期到成年期大鼠脊髓的大规模时序转录组分析取得了一些新的进展。研究发现发育早期波动的RNA表达水平反映了脊髓活跃的转录调控并可能启动了脊髓的早期模式发育。脊髓发育过程中由microRNA (miRNA)和转录因子(TF)构成的宏观调控网络在新生期前后存在切换现象(即“镶嵌模型”)。差异可变剪接事件提示了可变剪接可能是郎飞结发育的驱动力之一。我们的研究也支持了脊髓中先天免疫的发育与其内在生长能力之间存在负相关性。发育过程中的一些表观遗传学修饰很可能在不同发育阶段发挥各自的调控功能。G蛋白偶联受体(包括嗅觉受体)可能在发育的轴突生长中发挥多效性作用。该研究为脊髓发育领域提供了有价值的资源,并与越来越多的单细胞数据形成互补,也为开发新的脊髓损伤组织工程策略提供了组学基础。

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Hvistendahl M. China’s push in tissue engineering. Science 2012;338 (6109):900–2. 链接1

[ 2 ] Yang P, Yang Z. Enhancing intrinsic growth capacity promotes adult CNS regeneration. J Neurol Sci 2012;312(1-2):1–6. 链接1

[ 3 ] Neumann S, Skinner K, Basbaum AI. Sustaining intrinsic growth capacity of adult neurons promotes spinal cord regeneration. Proc Natl Acad Sci USA 2005;102(46):16848–52. 链接1

[ 4 ] Schultz MB, Sinclair DA. When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development 2016;143(1):3–14. 链接1

[ 5 ] Wells JM, Watt FM. Diverse mechanisms for endogenous regeneration and repair in mammalian organs. Nature 2018;557(7705):322–8. 链接1

[ 6 ] Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch S, et al. Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res 2009;37(18):e123.

[ 7 ] Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001;294(5543):853–8. 链接1

[ 8 ] Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 2009;25(15):1966–7. 链接1

[ 9 ] Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie2. Nat Methods 2012;9(4):357–9. 链接1

[10] Renfree MB, Papenfuss AT, Deakin JE, Lindsay J, Heider T, Belov K, et al. Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biol 2011;12(8):R81. 链接1

[11] Tarazona S, Furió-Tarí P, Turrà D, Di Pietro A, Nueda MJ, Ferrer A, et al. Data quality aware analysis of differential expression in RNA-seq with NOISeq R/ Bioc package. Nucleic Acids Res 2015;43(21):e140. 链接1

[12] Yanai I, Benjamin H, Shmoish M, Chalifa-Caspi V, Shklar M, Ophir R, et al. Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 2005;21(5):650–9. 链接1

[13] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf 2008;9(1):559. 链接1

[14] Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019;47(D1):D607–13.

[15] Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. In: Proceedings of the Third International Conference on Weblogs and Social Media; 2009 May 17–20; San Jose, CA, USA; 2009. p. 361–2.

[16] Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009;37(1):1–13. 链接1

[17] Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4 (1):44–57. 链接1

[18] Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009;25(9):1105–11. 链接1

[19] Shen S, Park JW, Lu ZX, Lin L, Henry MD, Wu YN, et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci USA 2014;111(51):E5593–601. 链接1

[20] Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010;28(5):511–5. 链接1

[21] Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, et al. CPC: assess the proteincoding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 2007;35:W345–9.

[22] Sun K, Chen X, Jiang P, Song X, Wang H, Sun H. iSeeRNA: identification of long intergenic non-coding RNA transcripts from transcriptome sequencing data. BMC Genomics 2013;14(S2):S7. 链接1

[23] Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 2013;29(22):2933–5. 链接1

[24] ’t Hoen PAC, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RHAM, de Menezes RX, et al. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res 2008;36(21):e141.

[25] Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 2010;26(1):136–8. 链接1

[26] Sunkin SM, Ng L, Lau C, Dolbeare T, Gilbert TL, Thompson CL, et al. Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res 2013;41(D1):D996–1008.

[27] D’haeseleer P, Liang S, Somogyi R. Genetic network inference: from coexpression clustering to reverse engineering. Bioinformatics 2000;16 (8):707–26. 链接1

[28] Fuller TF, Ghazalpour A, Aten JE, Drake TA, Lusis AJ, Horvath S. Weighted gene coexpression network analysis strategies applied to mouse weight. Mamm Genome 2007;18(6–7):463–72. 链接1

[29] Altman J, Bayer SA. The development of the rat spinal cord. Adv Anat Embryol Cell Biol 1984;85:1–164. 链接1

[30] Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods 2015;12(8):697.

[31] Arkov AL. RNA selection by Piwi proteins. Trends Biochem Sci 2018;43 (3):153–6. 链接1

[32] Joung J, Engreitz JM, Konermann S, Abudayyeh OO, Verdine VK, Aguet F, et al. Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature 2017;548(7667):343–6. 链接1

[33] Rasband MN, Peles E. The nodes of Ranvier: molecular assembly and maintenance. Cold Spring Harb Perspect Biol 2016;8(3):a020495. 链接1

[34] Gamazon ER, Stranger BE. Genomics of alternative splicing: evolution, development and pathophysiology. Hum Genet 2014;133(6):679–87. 链接1

[35] Iijima T, Yoshimura T. A perspective on the role of dynamic alternative RNA splicing in the development, specification, and function of axon initial segment. Front Mol Neurosci 2019;12:295. 链接1

[36] Alberti S, Gladfelter A, Mittag T. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell 2019;176 (3):419–34. 链接1

[37] Quiroz FG, Chilkoti A. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers. Nat Mater 2015;14(11):1164–71. 链接1

[38] Narendra V, Rocha PP, An D, Raviram R, Skok JA, Mazzoni EO, et al. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science 2015;347(6225):1017–21. 链接1

[39] Nora EP, Goloborodko A, Valton AL, Gibcus JH, Uebersohn A, Abdennur N, et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 2017;169(5):930–944. e22. 链接1

[40] Norris GT, Kipnis J. Immune cells and CNS physiology: microglia and beyond. J Exp Med 2019;216(1):60–70. 链接1

[41] Sakai M, Takeuchi H, Yu Z, Kikuchi Y, Ono C, Takahashi Y, et al. Polymorphisms in the microglial marker molecule CX3CR1 affect the blood volume of the human brain. Psychiatry Clin Neurosci 2018;72(6):409–22. 链接1

[42] Fumagalli M, Lombardi M, Gressens P, Verderio C. How to reprogram microglia toward beneficial functions. Glia 2018;66(12):2531–49. 链接1

[43] Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature 2000;406(6797):782–7. 链接1

[44] Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature 2015;517(7534):311–20. 链接1

[45] Piccinini AM, Midwood KS. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm 2010;2010:672395. 链接1

[46] Wacker MA, Teghanemt A, Weiss JP, Barker JH. High-affinity caspase-4 binding to LPS presented as high molecular mass aggregates or in outer membrane vesicles. Innate Immun 2017;23(4):336–44. 链接1

[47] Huang Y, Xu Z, Xiong S, Sun F, Qin G, Hu G, et al. Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion. Nat Neurosci 2018;21(4):530–40. 链接1

[48] Shin J, Cho Y, Beirowski B, Milbrandt J, Cavalli V, DiAntonio A. Dual leucine zipper kinase is required for retrograde injury signaling and axonal regeneration. Neuron 2012;74(6):1015–22. 链接1

[49] Guo JU, Su Y, Shin JH, Shin J, Li H, Xie B, et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci 2014;17(2):215–22. 链接1

[50] Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, et al. Global epigenomic reconfiguration during mammalian brain development. Science 2013;341(6146):1237905. 链接1

[51] Pandi G, Nakka VP, Dharap A, Roopra A, Vemuganti R, Arumugam TV. MicroRNA miR-29c down-regulation leading to de-repression of its target DNA methyltransferase 3a promotes ischemic brain damage. PLoS ONE 2013;8 (3):e58039. 链接1

[52] Zhou KI, Shi H, Lyu R, Wylder AC, Matuszek _ Z, Pan JN, et al. Regulation of cotranscriptional pre-mRNA splicing by m6 A through the low-complexity protein hnRNPG. Mol Cell 2019;76(1):70–81. 链接1

[53] Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6 A RNA methylomes revealed by m6 A-seq. Nature 2012;485(7397):201–6. 链接1

[54] Yao B, Christian KM, He C, Jin P, Ming GL, Song H. Epigenetic mechanisms in neurogenesis. Nat Rev Neurosci 2016;17(9):537–49. 链接1

[55] Hunter RG, Gagnidze K, McEwen BS, Pfaff DW. Stress and the dynamic genome: steroids, epigenetics, and the transposome. Proc Natl Acad Sci USA 2015;112(22):6828–33. 链接1

[56] Stroud H, Su SC, Hrvatin S, Greben AW, Renthal W, Boxer LD, et al. Early-life gene expression in neurons modulates lasting epigenetic states. Cell 2017;171 (5):1151–64. 链接1

[57] Zeng Y, Yao B, Shin J, Lin Li, Kim N, Song Q, et al. Lin28A binds active promoters and recruits Tet1 to regulate gene expression. Mol Cell 2016;61 (1):153–60. 链接1

[58] Nakagawa T, Lv L, Nakagawa M, Yu Y, Yu C, D’Alessio A, et al. CRL4VprBP E3 ligase promotes monoubiquitylation and chromatin binding of TET dioxygenases. Mol Cell 2015;57(2):247–60. 链接1

[59] Deplus R, Delatte B, Schwinn MK, Defrance M, Méndez J, Murphy N, et al. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J 2013;32(5):645–55. 链接1

[60] Müller U, Bauer C, Siegl M, Rottach A, Leonhardt H. TET-mediated oxidation of methylcytosine causes TDG or NEIL glycosylase dependent gene reactivation. Nucleic Acids Res 2014;42(13):8592–604. 链接1

[61] de la Rica L, Deniz Ö, Cheng KCL, Todd CD, Cruz C, Houseley J, et al. TETdependent regulation of retrotransposable elements in mouse embryonic stem cells. Genome Biol 2016;17(1):234. 链接1

[62] Lundstrom K. Structural genomics of GPCRs. Trends Biotechnol 2005;23 (2):103–8. 链接1

[63] Ma L, Wu Y, Qiu Q, Scheerer H, Moran A, Yu CR. A developmental switch of axon targeting in the continuously regenerating mouse olfactory system. Science 2014;344(6180):194–7. 链接1

[64] Hanchate NK, Kondoh K, Lu Z, Kuang D, Ye X, Qiu X, et al. Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis. Science 2015;350(6265):1251–5. 链接1

[65] Delile J, Rayon T, Melchionda M, Edwards A, Briscoe J, Sagner A. Single cell transcriptomics reveals spatial and temporal dynamics of gene expression in the developing mouse spinal cord. Development 2019;146(12): dev173807.

[66] Meng S, Chanda P, Cooke JP. Role of innate immune signaling in nuclear reprogramming. In: Steinhoff G, editor. Regenerative medicine—from protocol to patient: 1. biology of tissue regeneration. Cham: Springer International Publishing; 2016. p. 291–305. 链接1

[67] Stiefel KM, Torben-Nielsen B, Coggan JS. Proposed evolutionary changes in the role of myelin. Front Neurosci 2013;7:202. 链接1

[68] Hartline DK, Colman DR. Rapid conduction and the evolution of giant axons and myelinated fibers. Curr Biol 2007;17(1):R29–35. 链接1

相关研究