期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第12卷 第5期 doi: 10.1016/j.eng.2021.10.016

腿足机器人高爆发电机驱动关节与控制

a School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
b Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
c Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing 100081, China
d Department of Mechanical and Intelligent Systems Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan

收稿日期: 2021-02-20 修回日期: 2021-08-25 录用日期: 2021-10-25 发布日期: 2021-12-13

下一篇 上一篇

摘要

腿足机器人等无人系统需要具备快速的运动响应能力从而适应复杂环境。因此这些系统需要关节在动态运动的不同时刻提供峰值速度或者峰值力矩的爆发输出。尽管液压驱动能够提供很大的输出力,但是其效率较低,并且体积和重量都较大。工业系统所用的电机驱动关节也难以提供瞬时的爆发输出。固定速比的减速器难以兼顾高转速和大力矩输出的矛盾。本文提出了一种适用于腿足机器人的高爆发电机驱动关节和其对应的控制方法。首先,设计了一种高功率密度可变速比减速器来动态调整速度和力矩输出。关节同时采用了一种基于复合相变材料的散热结构。其次,采用了力矩积分控制方法来实现关节周期性的爆发输出。本文采用了多种腿足机器人的跳跃运动来验证所提出的爆发关节和控制方法的有效性。单腿机器人、四足机器人和仿人机器人的跳跃高度分别达到1.5 m、0.8 m和0.5 m。这也是目前公开报道的电机驱动腿足机器人跳跃能力的领先水平。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

参考文献

[ 1 ] Zhong RY, Xu X, Klotz E, Newman ST. Intelligent manufacturing in the context of Industry 4.0: a review. Engineering 2017;3(5):616‒30. 链接1

[ 2 ] Lee J, Hwangbo J, Wellhausen L, Koltun V, Hutter M. Learning quadrupedal locomotion over challenging terrain. Sci Robot 2020;5(47). 链接1

[ 3 ] Yu Z, Zhou Q, Chen X, Li Q, Meng L, Zhang W, et al. Disturbance tejection for biped walking using zero-moment point variation based on body acceleration. IEEE Trans Ind Informat 2019;15(4):2265‒76. 链接1

[ 4 ] bostondynamics.com [Internet]. Boston Dynamics; c2021 [cited 2021 Feb 15]. Available from: https://www.bostondynamics.com/atlas. 链接1

[ 5 ] Hutter M, Gehring C, Jud D, Lauber A, Bellicoso CD, Tsounis V, et al. ANYmal—a highly mobile and dynamic quadrupedal robot. In: Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2016 Oct 9‒14; Daejeon, Korea (South). New York: IEEE; 2016. p. 38‒44. 链接1

[ 6 ] Kaneko K, Kaminaga H, Sakaguchi T, Kajita S, Morisawa M, Kumagai I, et al. Humanoid robot HRP-5P: an electrically actuated humanoid robot with high-power and wide-range joints. IEEE Robot Autom Lett. 2019;4(2):1431‒8. 链接1

[ 7 ] Seok S, Wang A, Otten D, Kim S. Actuator design for high force proprioceptive control in fast legged locomotion. In: Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2012 Oct 7‒12; Vilamoura-Algarve, Portugal. New York: IEEE; 2012. p. 1970‒5. 链接1

[ 8 ] Seok S, Wang A, Chuah MY, Hyun DJ, Lee J, Otten DM, et al. Design principles for energy-efficient legged locomotion and implementation on the MIT cheetah robot. IEEE/ASME Trans Mechatronics 2015;20(3):1117‒29. 链接1

[ 9 ] Park HW, Park S, Kim S. Variable-speed quadrupedal bounding using impulse planning: untethered high-speed 3D Running of MIT Cheetah 2. In: Proceedings of 2015 IEEE International Conference Robotics and Automation (ICRA); 2015 May 26‒30; Seattle, WA, USA. New York: IEEE; 2015. p. 5163‒70. 链接1

[10] Bledt G, Powell MJ, Katz B, Di Carlo J, Wensing PM, Kim S. MIT Cheetah 3: design and control of a robust, dynamic quadruped robot. In: Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2018 Oct 1‒5; Madrid, Spain. New York: IEEE; 2018. p. 2245‒52. 链接1

[11] Wensing PM, Wang A, Seok S, Otten D, Lang J, Kim S. Proprioceptive actuator design in the MIT Cheetah: impact mitigation and high-bandwidth physical interaction for dynamic legged robots. IEEE Trans Robot 2017;33(3):509‒22. 链接1

[12] Sakagami Y, Watanabe R, Aoyama C, Matsunaga S, Higaki N, Fujimura K. The intelligent ASIMO: system overview and integration. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems; 2002 Sep 30‒Oct 4; Lausanne, Switzerland. New York: IEEE; 2002. p. 2478‒83. 链接1

[13] Hubicki C, Grimes J, Jones M, Renjewski D, Spröwitz A, Abate A, et al. ATRIAS: design and validation of a tether-free 3D-capable spring-mass bipedal robot. Int J Robotics Res 2016;35(12):1497‒521. 链接1

[14] Chen X, Yu Z, Zhang W, Zheng Y, Huang Q, Ming A. Bioinspired control of walking with toe-off, heel-strike, and disturbance rejection for a biped robot. IEEE Trans Ind Electron 2017;64(10):7962‒71. 链接1

[15] Paine N, Mehling JS, Holley J, Radford NA, Johnson G, Fok CL, et al. Actuator control for the NASA-JSC valkyrie humanoid robot: a decoupled dynamics approach for torque control of series elastic robots. J Field Robot 2015;32(3):378‒96. 链接1

[16] Xiong X, Ames AD. Bipedal hopping: reduced-order model embedding via optimization-based control. In: Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2018 Oct 1‒5; Madrid, Spain. New York: IEEE; 2018. p. 3821‒8. 链接1

[17] Albu-Schäffer A, Haddadin S, Ott C, Stemmer A, Wimböck T, Hirzinger G. The DLR lightweight robot: design and control concepts for robots in human environments. Ind Robot 2007;34(5):376‒85. 链接1

[18] Zhang C, Wang W, Xi N, Wang Y, Liu L. Development and future challenges of bio-syncretic robots. Engineering 2018;4(4):452‒63. 链接1

[19] Rockenfeller R, Günther M. How to model a muscle’s active force-length relation: a comparative study. Comput Methods Appl Mech Eng 2017;313:321‒36. 链接1

[20] Tomishiro K, Sato R, Harada Y, Ming A, Meng F, Liu H, et al. Design of Robot Leg with Variable Reduction Ratio Crossed Four-bar Linkage Mechanism. In: Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). 2019 Nov 3‒8; Macau, China; 2019. p. 4333‒8. 链接1

[21] Cramer MN, Jay O. Biophysical aspects of human thermoregulation during heat stress. Auton Neurosci. 2016;196:3‒13. 链接1

[22] Kembaum AS, Kitchell M, Crittenden M. An ultra-compact infinitely variable transmission for robotics. In: Proceedings of 2017 IEEE International Conference on Robotics and Automation (ICRA); 2017 May 29‒Jun 3; Singapore. New York: IEEE; 2017. p. 1800‒7. 链接1

[23] Naclerio ND, Kerst CF, Haggerty DA, Suresh SA, Singh S, Ogawa K, et al. Low-cost, continuously variable, strain wave transmission using gecko-inspired adhesives. IEEE Robot Autom Lett 2019;4(2):894‒901. 链接1

[24] Verstraten T, Furnémont R, López-García P, Rodriguez-Cianca D, Vanderborght B, Lefeber D. Kinematically redundant actuators, a solution for conflicting torque-speed requirements. Int J Robotics Res 2019;38(5):612‒29. 链接1

[25] Verstraten T, Furnémont R, Beckerle P, Vanderborght B, Lefeber D. A hopping robot driven by a series elastic dual-motor actuator. IEEE Robot Autom Lett 2019;4(3):2310‒6. 链接1

[26] De Carlo M, Mantriota G. Electric vehicles with two motors combined via planetary gear train. Mech Mach Theory 2020;148:103789. 链接1

[27] Urata J, Nakanishi Y, Okada K, Inaba M. Design of high torque and high speed leg module for high power humanoid. In: Proceedings of 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2010 Oct 18‒22; Taiwan, China New York: IEEE; 2010. p. 4497‒502. 链接1

[28] Kim D, Ahn J, Campbell O, Paine N, Sentis L. Investigations of a robotic test bed with viscoelastic liquid cooled actuators. IEEE/ASME Trans Mechatronics 2018;23(6):2704‒14. 链接1

[29] Ahn J, Kim D, Bang S, Paine N, Sentis L. Control of a high performance bipedal robot using viscoelastic liquid cooled actuators. In: Proceedings of 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids); 2019 Oct 15‒17; Toronto, ON, Canada. IEEE Press; 2019. p. 146‒53. 链接1

[30] Kolvenbach H, Hampp E, Barton P, Zenkl R, Hutter M. Towards jumping locomotion for quadruped robots on the moon. In: Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2019 Nov 3‒8; Macau, China; New York: IEEE; 2019. p. 5459‒66. 链接1

[31] Roozing W, Li Z, Medrano-Cerda GA, Caldwell DG, Tsagarakis NG. Development and control of a compliant asymmetric antagonistic actuator for energy efficient mobility. IEEE/ASME Trans Mechatronics 2016;‍21(2):1080‒91. 链接1

[32] Roozing W, Li Z, Caldwell DG, Tsagarakis NG. Design optimisation and control of compliant actuation arrangements in articulated robots for improved energy efficiency. IEEE Robot Autom Lett 2016;1(2):1110‒7. 链接1

[33] Qi H, Chen X, Yu Z, Huang G, Meng L, Hashimoto K, Liao W, Huang Q. A vertical jump optimization strategy for one-legged robot with variable reduction ratio joint. In: Proceedings of 2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids); 2021 Jul 19‒21; Munich, Germany. New York: IEEE; 2021. p. 262‒7. 链接1

相关研究