期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第19卷 第12期 doi: 10.1016/j.eng.2021.10.022

一种基于轨迹动力学的任务导向型飞行自组网赛博物理路由协议

a School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
b China Academy of Launch Vehicle Technology, Beijing 100076, China
c Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing 100876, China

收稿日期: 2021-02-23 修回日期: 2021-08-08 录用日期: 2021-10-11 发布日期: 2022-02-25

下一篇 上一篇

摘要

作为一种特殊的移动自组网(MANET),飞行自组网(FANET)具有在民用无线通信(如5G和6G)和国防工业中使能各种新兴应用的潜力。路由协议在FANET中起着关键作用。但是,在为FANET设计路由协议时,通常假设空中节点随机移动。这对于以任务为导向的FANET(MO-FANET)显然是不合适的。在该网络中,空中节点为了执行某些任务,通常保持良好的编队构型,沿着大致确定的飞行路径从给定的出发点向确定的目标点移动。本文提出了一种基于跨学科集成的新型赛博物理路由协议,基于MOFANET的特定移动模式,充分利用由任务决定的轨迹动力学模型,构建节点重新加入网络和互相分离的时间序列,并将其与每个节点的邻接矩阵一起作为先验信息。通过大量符合真实情况的NS-3 仿真试验,结果表明,与FANET中使用的现有代表性路由协议相比,本文提出的协议在保证更低的开销和更低的平均端到端延迟的同时,保持了相对适度和稳定的网络时延抖动,并实现了更高的数据包传输率(PDR)

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

图17

参考文献

[ 1 ] Maza I, Caballero F, Capitán J, Martínez-de-Dios JR, Ollero A. Experimental results in multi-UAV coordination for disaster management and civil security applications. J Intell Robot Syst 2011;61(1‒4):563‒85.

[ 2 ] Vollgger SA, Cruden AR. Mapping folds and fractures in basement and cover rocks using UAV photogrammetry, Cape Liptrap and Cape Paterson, Victoria, Australia. J Struct Geol 2016;85:168‒87. 链接1

[ 3 ] Meng XY, Wang W, Leong B. SkyStitch: A cooperative multi-UAV-based realtime video surveillance system with stitching. In: Proceedings of 23rd ACM International Conference on Multimedia; 2015 Oct 26‍‒‍30; Brisbane, QSD, Australia. ACM; 2015. p. 261‒70. 链接1

[ 4 ] Cheng X, Lyu F, Quan W, Zhou C, He H, Shi W, et al. Space/aerial-assisted computing offloading for IoT applications: a learning-based approach. IEEE J Sel Area Commun 2019;37(5):1117‒29. 链接1

[ 5 ] Zhao E, Chao T, Wang S, Yang M. Finite-time formation control for multiple flight vehicles with accurate linearization model. Aerosp Sci Technol 2017;71: 90‒8. 链接1

[ 6 ] Quan W, Cheng N, Qin M, Zhang H, Chan HA, Shen X. Adaptive transmission control for software defined vehicular networks. IEEE Wirel Commun Lett 2019;8(3):653‒6. 链接1

[ 7 ] Oubbati OS, Lakas A, Zhou F, Günes_ M, Yagoubi MB. A survey on position-based routing protocols for flying ad hoc networks (FANETs). Veh Commun 2017;10: 29‒56. 链接1

[ 8 ] Alshbatat AI, Dong L. Cross layer design for mobile ad-hoc unmanned aerial vehicle communication networks. In: Proceedings of 2010 International Conference on Networking, Sensing and Control (ICNSC); 2010 Apr 10‒12; Chicago, IL, USA. New York City: IEEE; 2010. p. 331‒6. 链接1

[ 9 ] Paul AB, Nandi S. Modified optimized link state routing (M-OLSR) for wireless mesh networks. In: Proceedings of 2018 International Conference on Information Technology; 2008 Dec 17‍‒‍20; Bhubaneswar, India. New York: IEEE; 2008. p. 147‒52. 链接1

[10] Park SY, Shin CS, Jeong D, Lee H. DroneNetX: Network reconstruction through connectivity probing and relay deployment by multiple UAVs in ad hoc networks. IEEE Trans Veh Technol 2018;67(11):11192‒207. 链接1

[11] Shirani R, St-Hilaire M, Kunz T, Zhou Y, Li J, Lamont L. On the delay of reactivegreedy-reactive routing in unmanned aeronautical ad-hoc networks. Procedia Comput Sci 2012;10:535‒42. 链接1

[12] Perkins CE, Royer EM. In: Ad-hoc on-demand distance vector routing. New Orleans, LA, USA. New York City: IEEE; 1999. p. 90‒100. 链接1

[13] Camp T, Boleng J, Davies V. A survey of mobility models for ad hoc network research. Wirel Commun Mob Comput 2002;2(5):483‒502. 链接1

[14] Cheng N, Quan W, Shi W, Wu H, Ye Q, Zhou H, et al. A comprehensive simulation platform for space-air-ground integrated network. IEEE Wirel Commun 2020;27(1):178‒85. 链接1

[15] Sánchez M, Manzoni P. ANEJOS: A Java based simulator for ad hoc networks. Future Gener Comput Syst 2001;17(5):573‒83. 链接1

[16] Liang B, Haas ZJ. Predictive distance-based mobility management for multidimensional PCS networks. IEEE/ACM Trans Network 2003;‍11(5):718‒32. 链接1

[17] Lin Z, Wang L, Han Z, Fu M. A graph Laplacian approach to coordinate-free formation stabilization for directed networks. IEEE Trans Autom Control 2016;61(5):1269‒80. 链接1

[18] Wang R, Dong X, Li Q, Ren Z. Distributed adaptive formation control for linear swarm systems with time-varying formation and switching topologies. IEEE Access 2016;4:8995‒9004. 链接1

[19] Ning Q, Tao G, Chen B, Lei Y, Yan H, Zhao C. Multi-UAVs trajectory and mission cooperative planning based on the Markov model. Phys Commun 2019;35: 1‒10. 链接1

[20] Dong X, Hua Y, Zhou Y, Ren Z, Zhong Y. Theory and experiment on formationcontainment control of multiple multirotor unmanned aerial vehicle systems. IEEE Trans Autom Sci Eng 2019;16(1):229‒40. 链接1

[21] Zhong D, Zhang H, Chen K. Trajectory generator of SINS based on flight mechanics and control in simulink. In: Proceedings of 2018 Chinese Automation Congress (CAC); 2018 Nov 30‒Dec 2; Xi’an, China. New York City: IEEE; 2018. p. 1638‒43. 链接1

[22] Chen K, Wang X, Liu M, Yu Y, Yan J. Coordinate transformation with application in HWIL simulation. Command Control Simul 2017;39(2): 118‒22. Chinese.

[23] Butcher JC. The numerical analysis of ordinary differential equations: Runge‒ Kutta and general linear methods. Chichester: John Wiley & Sons Ltd; 1987. 链接1

[24] Ferronato JJ, Trentin MAS. Analysis of routing protocols OLSR, AODV and ZRP in real urban vehicular scenario with density variation. IEEE Lat Am Trans 2017;15(9):1727‒34. 链接1

[25] Malik FM, Khattak HA, Almogren A, Bouachir O, Din IU, Altameem A. Performance evaluation of data dissemination protocols for connected autonomous vehicles. IEEE Access 2020;8:126896‒906. 链接1

[26] Bai R, Singhal M. DOA: DSR over AODV routing for mobile ad hoc networks. IEEE Trans Mobile Comput 2006;5(10):1403‒16. 链接1

[27] Chen Q, Kanhere SS, Hassan M. Adaptive position update for geographic routing in mobile ad hoc networks. IEEE Trans Mobile Comput 2013;12(3): 489‒501. 链接1

相关研究