期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第13卷 第6期 doi: 10.1016/j.eng.2021.11.016

水泥基材料的多功能、可持续和生物非脲解自愈系统

a School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia
b School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia
c Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia
d Department of Chemical Engineering, Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3168, Australia

收稿日期: 2020-10-30 修回日期: 2021-09-25 录用日期: 2021-11-23 发布日期: 2022-01-10

下一篇 上一篇

摘要

Microbially induced calcium carbonate (CaCO3) precipitation (MICP) has been investigated as a sustainable alternative to conventional concrete remediation methods for improving the mechanical properties and durability of concrete structures. To date, urea-dependent MICP is the most widely employed MICP pathway in biological self-healing concrete research as its use has resulted in efficient CaCO3 precipitation rates. NH3 is a byproduct of ureolysis, and can be hazardous to cementitious structures and the health of various species. Accordingly, non-ureolytic bacterial concrete self-healing systems have been developed as eco-friendly alternatives to urea-dependent self-healing systems. Non-ureolytic pathways can improve the physical properties of concrete samples and incorporate the use of waste materials; they have the potential to be cost-effective and sustainable. Moreover, they can be applied in terrestrial and marine environments. To date, research on non-ureolytic concrete self-healing systems has been scarce compared to that on ureolytic systems. This article discusses the advances and challenges in non-ureolytic bacterial concrete self-healing studies and highlights the directions for future research.

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Mote CD, Dowling DA, Zhou J. The power of an idea: the international impacts of the grand challenges for engineering. Engineering 2016;2(1):4‒7. 链接1

[ 2 ] Li VC. High-performance and multifunctional cement-based composite material. Engineering 2019;5(2):250‒60. 链接1

[ 3 ] Chan AC. Tackling global grand challenges in our cities. Engineering 2016;2(1):10‒5. 链接1

[ 4 ] Hao H, Li J. Sustainable high-performance resilient structures. Engineering 2019;5(2):197‒8. 链接1

[ 5 ] Basheer PAM, Chidiact SE, Long AE. Predictive models for deterioration of concrete structures. Constr Build Mater 1996;10(1):27‒37. 链接1

[ 6 ] Wang JY, Soens H, Verstraete W, De Belie N. Self-healing concrete by use of microencapsulated bacterial spores. Cement Concr Res 2014;56:139‒52. 链接1

[ 7 ] Seifan M, Samani AK, Berenjian A. Bioconcrete: next generation of self-healing concrete. Appl Microbiol Biotechnol 2016;100(6):2591‒602. 链接1

[ 8 ] Monteiro PJM, Miller SA, Horvath A. Towards sustainable concrete. Nat Mater 2017;16(7):698‒9. 链接1

[ 9 ] Wiktor V, Jonkers HM. Bacteria-based concrete: from concept to market. Smart Mater Struct 2016;25(8):084006. 链接1

[10] De Rooij M, Van Tittelboom K, De Belie N, Schlangen E, editors. Self-healing phenomena in cement-based materials. Cham: Springer; 2013. 链接1

[11] Yang Y, Lepech MD, Yang EH, Li VC. Autogenous healing of engineered cementitious composites under wet‒dry cycles. Cement Concr Res 2009;39(5):382‒90. 链接1

[12] Yuan L, Li M, Huang Y, Zhou Z, Luan C, Ren Z, et al. Improving the autogenous self-sealing of mortar: influence of curing condition. Materials 2021;14(8):2068. 链接1

[13] Luo M, Jing K, Bai J, Ding Z, Yang D, Huang H, et al. Effects of curing conditions and supplementary cementitious materials on autogenous self-healing of early age cracks in cement mortar. Crystals 2021;11(7):752. 链接1

[14] Gardner D, Jefferson A, Hoffman A, Lark R. Simulation of the capillary flow of an autonomic healing agent in discrete cracks in cementitious materials. Cement Concr Res 2014;58:35‒44. 链接1

[15] Feiteira J, Gruyaert E, De Belie N. Self-healing of moving cracks in concrete by means of encapsulated polymer precursors. Constr Build Mater 2016;102(1):671‒8. 链接1

[16] Araújo M, Van Tittelboom K, Dubruel P, Van Vlierberghe S, De Belie N. Acrylate-endcapped polymer precursors: effect of chemical composition on the healing efficiency of active concrete cracks. Smart Mater Struct 2017;26(5):055031. 链接1

[17] Feiteira JLG, Couvreur J, Gruyaert E, De Belie N. Resistance to fatigue of selfhealed concrete based on encapsulated polymer precursors. In: Grantham MG, Papayianni I, Sideris K, editors. Concrete solutions. Proceedings of the 6th International Conference on Concrete Repair; 2016 Jun 20‒23; Thessaloniki, Greece. Thessaloniki: CRC Press‒Taylor and Francis Group; 2016. p. 585‒8. 链接1

[18] Jonkers HM. Self healing concrete: a biological approach. In: Van der Zwaag S, editor. Self healing materials. Dordrecht: Springer; 2007. p. 195‒204. 链接1

[19] Van Tittelboom K, De Muynck W, De Belie N, Verstraete W. Bacteria protect and heal concrete and stone. In: Schueremans L, editor. WTA Schriftenr. Proceedings of the 1st WTA International PhD Symposium: Building Materials and Building Technology to Preserve the Built Heritage; 2009 Oct 8‒9; Leuven, Belgium. Munich: International Association for Science and Technology of Building Maintenance and the Preservation of Monuments (WTA); 2009. p. 439‒57. 链接1

[20] Fahimizadeh M, Abeyratne AD, Mae LS, Singh RKR, Pasbakhsh P. Biological self-healing of cement paste and mortar by non-ureolytic bacteria encapsulated in alginate hydrogel capsules. Materials 2020;13(17):3711. 链接1

[21] Al-Salloum Y, Hadi S, Abbas H, Almusallam T, Moslem MA. Bio-induction and bioremediation of cementitious composites using microbial mineral precipitation—a review. Constr Build Mater 2017;154:857‒76. 链接1

[22] Seifan M, Berenjian A. Application of microbially induced calcium carbonate precipitation in designing bio self-healing concrete. World J Microbiol Biotechnol 2018;34(11):168. 链接1

[23] Alghamri R, Kanellopoulos A, Litina C, Al-Tabbaa A. Preparation and polymeric encapsulation of powder mineral pellets for self-healing cement based materials. Constr Build Mater 2018;186:247‒62. 链接1

[24] Qureshi TS, Kanellopoulos A, Al-Tabbaa A. Encapsulation of expansive powder minerals within a concentric glass capsule system for self-healing concrete. Constr Build Mater 2016;121:629‒43. 链接1

[25] Ersan YÇ, Hernandez-Sanabria E, Boon N, de Belie N. Enhanced crack closure performance of microbial mortar through nitrate reduction. Cement Concr Compos 2016;70:159‒70. 链接1

[26] Mors RM, Jonkers HM. Feasibility of lactate derivative based agent as additive for concrete for regain of crack water tightness by bacterial metabolism. Ind Crops Prod 2017;106:97‒104. 链接1

[27] Joseph C, Jefferson AD, Isaacs B, Lark R, Gardner D. Experimental investigation of adhesive-based self-healing of cementitious materials. Mag Concr Res 2010;62(11):831‒43. 链接1

[28] Minnebo P, Thierens G, De Valck G, Van Tittelboom K, De Belie N, Van Hemelrijck D, et al. A novel design of autonomously healed concrete: towards a vascular healing network. Materials 2017;10(1):49. 链接1

[29] Li Z, de Souza LR, Litina C, Markaki AE, Al-Tabbaa A. A novel biomimetic design of a 3D vascular structure for self-healing in cementitious materials using Murray’s law. Mater Des 2020;190:108572. 链接1

[30] Sierra-Beltran MG, Jonkers HM, Mors RM, Mera-Ortiz W. Field application of self-healing concrete with natural fibres as linings for irrigation canals in Ecuador. In: ICSHM 2015: Proceedings of the 5th International Conference on Self-Healing Materials; 2015 Jun 22‒24; Durham, NC, USA; 2015.

[31] Karimi N, Mostofinejad D. Bacillus subtilis bacteria used in fiber reinforced concrete and their effects on concrete penetrability. Constr Build Mater 2020;230:117051. 链接1

[32] Nishiwaki T, Mihashi H, Jang BK, Miura K. Development of self-healing system for concrete with selective heating around crack. J Adv Concr Technol 2006;4(2):267‒75. 链接1

[33] Van Tittelboom K, De Belie N, Van Loo D, Jacobs P. Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent. Cement Concr Compos 2011;33(4):497‒505. 链接1

[34] Dry C, McMillan W. Three-part methylmethacrylate adhesive system as an internal delivery system for smart responsive concrete. Smart Mater Struct 1996;5(3):297‒300. 链接1

[35] De Muynck W, De Belie N, Verstraete W. Microbial carbonate precipitation in construction materials: a review. Ecol Eng 2010;36(2):118‒36. 链接1

[36] Jonkers HM, Thijssen A, Muyzer G, Copuroglu O, Schlangen E. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng 2010;36(2):230‒5. 链接1

[37] Ramachandran SK, Ramakrishnan V, Bang SS. Remediation of concrete using microorganisms. ACI Mater J 2001;98:3‒9. 链接1

[38] Ghosh P, Mandal S, Chattopadhyay BD, Pal S. Use of microorganism to improve the strength of cement mortar. Cement Concr Res 2005;35(10):1980‒3. 链接1

[39] Oppenheimer-Shaanan Y, Sibony-Nevo O, Bloom-Ackermann Z, Suissa R, Steinberg N, Kartvelishvily E, et al. Spatio‒temporal assembly of functional mineral scaffolds within microbial biofilms. NPJ Biofilms Microbiomes 2016;2(1):15031. 链接1

[40] Sharma TK, Alazhari M, Heath A, Paine K, Cooper RM. Alkaliphilic Bacillus species show potential application in concrete crack repair by virtue of rapid spore production and germination then extracellular calcite formation. J Appl Microbiol 2017;122(5):1233‒44. 链接1

[41] Zhu T, Dittrich M. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Front Bioeng Biotechnol 2016;4:4. 链接1

[42] Mujah D, Shahin MA, Cheng L. State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization. Geomicrobiol J 2017;34(6):524‒37. 链接1

[43] Anbu P, Kang CH, Shin YJ, So JS. Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus 2016;5(1):250. 链接1

[44] Wang JY, Van Tittelboom K, De Belie N, Verstraete W. Potential of applying bacteria to heal cracks in concrete. In: Proceedings of the Second International Conference on Sustainable Construction Materials and Technologies; 28‍‒‍30 Jun 2010; Ancona, Italy; 2010. p.1807‒18. 链接1

[45] Gat D, Ronen Z, Tsesarsky M. Long-term sustainability of microbial-induced CaCO3 precipitation in aqueous media. Chemosphere 2017;184:524‒31. 链接1

[46] Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015;525(7569):367‒71. 链接1

[47] Castanier S, Le Métayer-Levrel G, Perthuisot JP. Ca-carbonates precipitation and limestone genesis—the microbiogeologist point of view. Sediment Geol 1999;126(1‒4):9‒23.

[48] Zhu T, Paulo C, Merroun ML, Dittrich M. Potential application of biomineralization by Synechococcus PCC8806 for concrete restoration. Ecol Eng 2015;82:459‒68. 链接1

[49] Lors C, Ducasse-Lapeyrusse J, Gagné R, Damidot D. Microbiologically induced calcium carbonate precipitation to repair microcracks remaining after autogenous healing of mortars. Constr Build Mater 2017;141:461‒9. 链接1

[50] Maignien L, Depreiter D, Foubert A, Reveillaud J, De Mol L, Boeckx P, et al. Anaerobic oxidation of methane in a cold-water coral carbonate mound from the Gulf of Cadiz. Int J Earth Sci 2011;100(6):1413‒22. 链接1

[51] DeJong JT, Mortensen BM, Martinez BC, Nelson DC. Bio-mediated soil improvement. Ecol Eng 2010;36(2):197‒210. 链接1

[52] Hamdan N, Kavazanjian E, Rittmann BE, Karatas I. Carbonate mineral precipitation for soil improvement through microbial denitrification. Geomicrobiol J 2017;34(2):139‒46. 链接1

[53] Seifan M, Samani AK, Berenjian A. New insights into the role of pH and aeration in the bacterial production of calcium carbonate (CaCO3). Appl Microbiol Biotechnol 2017;101(8):3131‒42. 链接1

[54] Hoffmann TD, Reeksting BJ, Gebhard S. Bacteria-induced mineral precipitation: a mechanistic review. Microbiology 2021;167(4):001049. 链接1

[55] Mondal S, Ghosh AD. Review on microbial induced calcite precipitation mechanisms leading to bacterial selection for microbial concrete. Constr Build Mater 2019;225:67‒75. 链接1

[56] Jonkers HM. Toward bio-based geo- & civil engineering for a sustainable society. Procedia Eng 2017;171:168‒75. 链接1

[57] Scrivener K, De Belie N. Bacteriogenic sulfuric acid attack of cementitious materials in sewage systems. In: Alexander M, Bertron A, De Belie N, editors. Performance of cement-based materials in aggressive aqueous environments. Dordrecht: Springer; 2013. p. 305‒18. 链接1

[58] Raman RKS, Siew WH. Role of nitrite addition in chloride stress corrosion cracking of a super duplex stainless steel. Corros Sci 2010;52(1):113‒7. 链接1

[59] Shaheen N, Jalil A, Adnan F, Arsalan Khushnood R. Isolation of alkaliphilic calcifying bacteria and their feasibility for enhanced CaCO3 precipitation in bio-based cementitious composites. Microb Biotechnol 2021;14(3):1044‒59. 链接1

[60] Gao M, Guo J, Cao H, Wang H, Xiong X, Krastev R, et al. Immobilized bacteria with pH-response hydrogel for self-healing of concrete. J Environ Manage 2020;261:110225. 链接1

[61] Khaliq W, Ehsan MB. Crack healing in concrete using various bio influenced self-healing techniques. Constr Build Mater 2016;102(1):349‒57. 链接1

[62] Mondal S, Ghosh AD. Investigation into the optimal bacterial concentration for compressive strength enhancement of microbial concrete. Constr Build Mater 2018;183:202‒14. 链接1

[63] Sierra-Beltran MG, Jonkers HM, Schlangen E. Characterization of sustainable bio-based mortar for concrete repair. Constr Build Mater 2014;67:344‒52. 链接1

[64] Xu J, Yao W, Jiang Z. Non-ureolytic bacterial carbonate precipitation as a surface treatment strategy on cementitious materials. J Mater Civ Eng 2014;26(5):983‒91. 链接1

[65] Xu J, Yao W. Multiscale mechanical quantification of self-healing concrete incorporating non-ureolytic bacteria-based healing agent. Cement Concr Res 2014;64:1‒10. 链接1

[66] Wiktor V, Jonkers HM. Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement Concr Compos 2011;33(7):763‒70. 链接1

[67] Son HM, Kim HY, Park SM, Lee HK. Ureolytic/non-ureolytic bacteria cocultured self-healing agent for cementitious materials crack repair. Materials 2018;11(5):782. 链接1

[68] Yadav R, Labhsetwar N, Kotwal S, Rayalu S. Single enzyme nanoparticle for biomimetic CO2 sequestration. J Nanopart Res 2011;13(1):263‒71. 链接1

[69] Xu J, Du Y, Jiang Z, She A. Effects of calcium source on biochemical properties of microbial CaCO3 precipitation. Front Microbiol 2015;6:1366. 链接1

[70] Binczarski M, Berlowska J, Stanishevsky A, Witonska I. Biologically synthesized crude calcium lactate as a substrate for propylene glycol production. RSC Adv 2016;6(95):92420‒7. 链接1

[71] Körner H, Zumft WG. Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Appl Environ Microbiol 1989;55(7):1670‒6. 链接1

[72] Ersan YÇ, Verbruggen H, De Graeve I, Verstraete W, De Belie N, Boon N. Nitrate reducing CaCO3 precipitating bacteria survive in mortar and inhibit steel corrosion. Cement Concr Res 2016;83:19‒30. 链接1

[73] van Paassen LA, Daza CM, Staal M, Sorokin DY, van der Zon W, van Loosdrecht MCM. Potential soil reinforcement by biological denitrification. Ecol Eng 2010;36(2):168‒75. 链接1

[74] Ersan YÇ, Gruyaert E, Louis G, Lors C, De Belie N, Boon N. Self-protected nitrate reducing culture for intrinsic repair of concrete cracks. Front Microbiol 2015;6:1228. 链接1

[75] Ersan YÇ, De Belie N, Boon N. Resilient denitrifiers wink at microbial selfhealing concrete. In: Proceedings of the Second International Conference on Advances in Bio-Informatics, Bio-Technology and Environmental Engineering—ABBE 2014; 2014 Nov 16‒17; Birmingham, UK; 2014. p. 37‒41. 链接1

[76] Kamennaya NA, Ajo-Franklin CM, Northen T, Jansson C. Cyanobacteria as biocatalysts for carbonate mineralization. Minerals 2012;2(4):338‒64. 链接1

[77] Kaur G, Dhami NK, Goyal S, Mukherjee A, Reddy MS. Utilization of carbon dioxide as an alternative to urea in biocementation. Constr Build Mater 2016;123:527‒33. 链接1

[78] Aber JD, Magill A, Mcnulty SG, Boone RD, Nadelhoffer KJ, Downs M, et al. Forest biogeochemistry and primary production altered by nitrogen saturation. Water Air Soil Pollut 1995;85(3):1665‒70. 链接1

[79] Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, et al. Human alteration of the global nitrogen cycle: causes and consequences. Ecol Soc Am 1997;7(3):737‒50. 链接1

[80] Cowling EB, Erisman JW, Smeulders SM, Holman SC, Nicholson BM. Optimizing air quality management in Europe and North America: justification for integrated management of both oxidized and reduced forms of nitrogen. Environ Pollut 1998;102(1):599‒608. 链接1

[81] Cook EM. Direct and indirect ecological consequences of human activities in urban and native ecosystems [dissertation]. Tempe: Arizona State University; 2014.

[82] Tan L, Reeksting B, Ferrandiz-Mas V, Heath A, Gebhard S, Paine K. Effect of carbonation on bacteria-based self-healing of cementitious composites. Constr Build Mater 2020;257:119501. 链接1

[83] Tziviloglou E, Wiktor V, Jonkers HM, Schlangen E. Selection of nutrient used in biogenic healing agent for cementitious materials. Front Mater 2017;4:15. 链接1

[84] Bheda P. Metabolic transcriptional memory. Mol Metab 2020;38:100955. 链接1

[85] Mondal S, Das P, Kumar Chakraborty A. Application of bacteria in concrete. Mater Today Proc 2017;4(9):9833‒6. 链接1

[86] Ducasse-Lapeyrusse J, Gagné R, Lors C, Damidot D. Effect of calcium gluconate, calcium lactate, and urea on the kinetics of self-healing in mortars. Constr Build Mater 2017;157:489‒97. 链接1

[87] Silva FB, Boon N, De Belie N, Verstraete W. Industrial application of biological self-healing concrete: challenges and economical feasibility. J Commer Biotechnol 2015;21(1):31‒8. 链接1

[88] Gupta S, Pang SD, Kua HW. Autonomous healing in concrete by bio-based healing agents—a review. Constr Build Mater 2017;146:419‒28. 链接1

[89] Di Maria A, Van Acker K. Turning industrial residues into resources: an environmental impact assessment of goethite valorization. Engineering 2018;4(3):421‒9. 链接1

[90] Alderete NM, Joseph AM, Van den Heede P, Matthys S, De Belie N. Effective and sustainable use of municipal solid waste incineration bottom ash in concrete regarding strength and durability. Resour Conserv Recycl 2021;167:105356. 链接1

[91] Joseph AM, Alderete N, Matthys S, De Belie N. Processed municipal solid waste incineration ashes as sustainable binder for concrete products. In: Cunha VMCF, Rezazadeh M, Gowda C, editors. Proceedings of the 3rd RILEM Spring Convention and Conference (RSCC 2020); 2020 Mar 10‒14; Guimarães, Portugal; 2021. 链接1

[92] Song X, Wang H, Yang X, Liu F, Yu S, Liu S. Hydrolysis of poly(lactic acid) into calcium lactate using ionic liquid [Bmim][OAc] for chemical recycling. Polym Degrad Stab 2014;110:65‒70. 链接1

[93] Shi S, Kang L, Lee YY. Production of lactic acid from the mixture of softwood pre-hydrolysate and paper mill sludge by simultaneous saccharification and fermentation. Appl Biochem Biotechnol 2015;175(5):2741‒54. 链接1

[94] Singh NB, Prabha S, Singh AK. Effect of lactic acid on the hydration of Portland cement. Cement Concr Res 1986;16(4):545‒53. 链接1

[95] Jin F, Zhang G, Jin Y, Watanabe Y, Kishita A, Enomoto H. A new process for producing calcium acetate from vegetable wastes for use as an environmentally friendly deicer. Bioresour Technol 2010;101(19):7299‒306. 链接1

[96] Ma H, Feng X, Yang Y, Zhang Z, Deng C. Preparation of feed grade calcium formate from calcium carbide residue. Clean Technol Environ Policy 2016;18(6):1905‒15. 链接1

[97] Vermeer CM, Rossi E, Tamis J, Jonkers HM, Kleerebezem R. From waste to selfhealing concrete: a proof-of-concept of a new application for polyhydroxyalkanoate. Resour Conserv Recycl 2021;164:105206. 链接1

[98] Ulubeyli GC, Artir R. Sustainability for blast furnace slag: use of some construction wastes. Procedia Soc Behav Sci 2015;195:2191‒8. 链接1

[99] Ganesh Babu K, Sree Rama Kumar V. Efficiency of GGBS in concrete. Cement Concr Res 2000;30(7):1031‒6. 链接1

[100] Jiang Y, Ling TC, Mo KH, Shi C. A critical review of waste glass powder—multiple roles of utilization in cement-based materials and construction products. J Environ Manage 2019;242:440‒9. 链接1

[101] Li YL, Zhao XL, Singh Raman RK, Al-Saadi S. Thermal and mechanical properties of alkali-activated slag paste, mortar and concrete utilizing seawater and sea sand. Constr Build Mater 2018;159:704‒24. 链接1

[102] Palod R, Deo SV, Ramtekkar GD. Utilization of waste from steel and iron industry as replacement of cement in mortars. J Mater Cycles Waste Manag 2019;21(6):1361‒75. 链接1

[103] Sivakumar PP, Gruyaert E, De Belie N, Matthys S. Reactivity of modified iron silicate slag as sustainable alternative binder. In: Claisse P, Ganjian E, Naik T, editors. Sustainable construction materials and technologies. Proceedings of the Fifth International Conference on Sustainable Construction Materials and Technologies; 2019 Jul 14‒17; London, UK. Coventry: Coventry University; 2019. p. 39‒49. 链接1

[104] Wang Q, Zhang B, Yan P. The influence of steel slag with high Al2O3 content on the initial hydration of cement. Sci China Technol Sci 2013;56(12):3123‒8. 链接1

[105] Witoon T. Characterization of calcium oxide derived from waste eggshell and its application as CO2 sorbent. Ceram Int 2011;37(8):3291‒8. 链接1

[106] Viriya-empikul N, Krasae P, Puttasawat B, Yoosuk B, Chollacoop N, Faungnawakij K. Waste shells of mollusk and egg as biodiesel production catalysts. Bioresour Technol 2010;101(10):3765‒7. 链接1

[107] Hong M, Jang I, Son Y, Yi C, Park W. Agricultural by-products and oyster shell as alternative nutrient sources for microbial sealing of early age cracks in mortar. AMB Express 2021;11(1):11. 链接1

[108] Røyne A, Phua YJ, Balzer Le S, Eikjeland IG, Josefsen KD, Markussen S, et al. Towards a low CO2 emission building material employing bacterial metabolism (1/2): the bacterial system and prototype production. PLoS ONE 2019;14(4):0212990. 链接1

[109] Myhr A, Røyne F, Brandtsegg AS, Bjerkseter C, Throne-Holst H, Borch A, et al. Towards a low CO2 emission building material employing bacterial metabolism (2/2): prospects for global warming potential reduction in the concrete industry. PLoS ONE 2019;14(4):e0208643. 链接1

[110] Rajczakowska M, Habermehl-Cwirzen K, Hedlund H, Cwirzen A. Autogenous self-healing: a better solution for concrete. J Mater Civ Eng 2019;31(9):03119001. 链接1

[111] Jakubovskis R, Jankutė A, Guobužaitė S, Boris R, Urbonavičius J. Prolonging bacterial viability in biological concrete: coated expanded clay particles. Materials 2021;14(11):2719. 链接1

[112] Kardogan B, Sekercioglu K, Ersan YÇ. Compatibility and biomineralization oriented optimization of nutrient content in nitratereducing-biogranules-based microbial self-healing concrete. Sustainability 2021;13(16):8990. 链接1

[113] Palin D, Wiktor V, Jonkers HM. A bacteria-based self-healing cementitious composite for application in low-temperature marine environments. Biomimetics 2017;2(3):13. 链接1

[114] Palin D, Wiktor V, Jonkers HM. A bacteria-based bead for possible self-healing marine concrete applications. Smart Mater Struct 2016;25(8):084008. 链接1

[115] Broomfield JP. Corrosion of steel in concrete: understanding, investigation and repair. 2nd ed. Boca Raton: CRC Press; 2006.

[116] Poorni S, Natarajan KA. Flocculation behaviour of hematite‒kaolinite suspensions in presence of extracellular bacterial proteins and polysaccharides. Colloids Surf B Biointerfaces 2014;114:186‒92. 链接1

[117] Schwantes-Cezario N, Medeiros LP, De Oliveira AG, Nakazato G, Katsuko Takayama Kobayashi R, Toralles BM. Bioprecipitation of calcium carbonate induced by Bacillus subtilis isolated in Brazil. Int Biodeterior Biodegrad 2017;123:200‒5. 链接1

[118] Marvasi M, Visscher PT, Perito B, Mastromei G, Casillas-Martínez L. Physiological requirements for carbonate precipitation during biofilm development of Bacillus subtilis etfA mutant. FEMS Microbiol Ecol 2010;71(3):341‒50. 链接1

[119] Tziviloglou E, Wiktor V, Jonkers HM, Schlangen E. Bacteria-based self-healing concrete to increase liquid tightness of cracks. Constr Build Mater 2016;122:118‒25. 链接1

[120] Luo M, Qian C. Influences of bacteria-based self-healing agents on cementitious materials hydration kinetics and compressive strength. Constr Build Mater 2016;121:659‒63. 链接1

[121] Mignon A, Snoeck D, D’Halluin K, Balcaen L, Vanhaecke F, Dubruel P, et al. Alginate biopolymers: counteracting the impact of superabsorbent polymers on mortar strength. Constr Build Mater 2016;110:169‒74. 链接1

[122] Yang J, Snoeck D, De Belie N, Sun Z. Effect of superabsorbent polymers and expansive additives on the shrinkage of alkali-activated slag. Cement Concr Compos 2021;123:104218. 链接1

[123] Snoeck D, Goethals W, Hovind J, Trtik P, Van Mullem T, Van den Heede P, et al. Internal curing of cement pastes by means of superabsorbent polymers visualized by neutron tomography. Cement Concr Res 2021;147:106528. 链接1

[124] Aligizaki KK. Pore structure of cement-based materials: testing, interpretation and requirements. London: CRC Press; 2014.

[125] Nolan É, Basheer PAM, Long AE. Effects of three durability enhancing products on some physical properties of near surface concrete. Constr Build Mater 1995;9(5):267‒72. 链接1

[126] De Muynck W, Debrouwer D, De Belie N, Verstraete W. Bacterial carbonate precipitation improves the durability of cementitious materials. Cement Concr Res 2008;38(7):1005‒14. 链接1

[127] Jansson C, Northen T. Calcifying cyanobacteria—the potential of biomineralization for carbon capture and storage. Curr Opin Biotechnol 2010;21(3):365‒71. 链接1

[128] Wang J, Van Tittelboom K, De Belie N, Verstraete W. Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Constr Build Mater 2012;26(1):532‒40. 链接1

[129] Stocks-Fischer S, Galinat JK, Bang SS. Microbiological precipitation of CaCO3. Soil Biol Biochem 1999;31(11):1563‒71. 链接1

[130] Polka JK, Silver PA. Induced sensitivity of Bacillus subtilis colony morphology to mechanical media compression. PeerJ 2014;2:597. 链接1

[131] Mors R, Jonkers H. Effect on concrete surface water absorption upon addition of lactate derived agent. Coatings 2017;7(4):51. 链接1

[132] da Silva DMG, Cappellesso VG, Garcia MGL, Masuero AB, Molin DCCD. Calcium hydroxide influence in autogenous self-healing of cement-based materials in various environmental conditions. Ambient Constr 2021;‍21(2):209‒14. 链接1

[133] Zhang J, Zhou A, Liu Y, Zhao B, Luan Y, Wang S, et al. Microbial network of the carbonate precipitation process induced by microbial consortia and the potential application to crack healing in concrete. Sci Rep 2017;‍7:14600. Corrected in: Sci Rep 2018;8:1019. 链接1

[134] Tziviloglou E, Wiktor V, Jonkers HM, Schlangen E. Performance requirements to ensure the crack sealing performance of bacteria-based self-healing concrete. In: SaoumaV, BolanderJ, LandisE, editors. Proceedings of the 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures; 2016 May 29‒Jun 1; Berkeley, CA, USA; 2016. 链接1

[135] Wang X, Dong S, Li Z, Han B, Ou J. Nanomechanical characteristics of interfacial transition zone in nano-engineered concrete. Engineering. . . 10.1016/j.eng.2020.08.025

[136] Palin D, Wiktor V, Jonkers HM. Autogenous healing of marine exposed concrete: characterization and quantification through visual crack closure. Cement Concr Res 2015;73:17‒24. 链接1

[137] Zhang J, Zhao C, Zhou A, Yang C, Zhao L, Li Z. Aragonite formation induced by open cultures of microbial consortia to heal cracks in concrete: Insights into healing mechanisms and crystal polymorphs. Constr Build Mater 2019;‍224:815‒22. 链接1

[138] Nain N, Surabhi R, Yathish NV, Krishnamurthy V, Deepa T, Tharannum S. Enhancement in strength parameters of concrete by application of Bacillus bacteria. Constr Build Mater 2019;202:904‒8. 链接1

[139] Sarkar M, Alam N, Chaudhuri B, Chattopadhyay B, Mandal S. Development of an improved E. coli bacterial strain for green and sustainable concrete technology. RSC Adv 2015;5(41):32175‒82. 链接1

[140] Sarkar M, Chowdhury T, Chattopadhyay B, Gachhui R, Mandal S. Autonomous bioremediation of a microbial protein (bioremediase) in pozzolana cementitious composite. J Mater Sci 2014;49(13):4461‒8. 链接1

[141] Sarkar M, Adak D, Tamang A, Chattopadhyay B, Mandal S. Geneticallyenriched microbe-facilitated self-healing concrete—a sustainable material for a new generation of construction technology. RSC Adv 2015;5(127):105363‒71. 链接1

[142] Hia IL, Pasbakhsh P, Chan ES, Chai SP. Electrosprayed multi-core alginate microcapsules as novel self-healing containers. Sci Rep 2016;6(1):34674. 链接1

[143] Pasbakhsh P, Churchman GJ, Keeling JL. Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Appl Clay Sci 2013;74:47‒57. 链接1

[144] Shahriari D, Loke G, Tafel I, Park S, Chiang PH, Fink Y, et al. Scalable fabrication of porous microchannel nerve guidance scaffolds with complex geometries. Adv Mater 2019;31(30):1902021. 链接1

[145] Vahedi V, Pasbakhsh P, Piao CS, Seng CE. A facile method for preparation of self-healing epoxy composites: using electrospun nanofibers as microchannels. J Mater Chem A 2015;3(31):16005‒12. Corrected in: J Mater Chem A 2015;3(35):18310. 链接1

[146] Mou CL, Wang W, Ju XJ, Xie R, Liu Z, Chu LY. Dual-responsive microcarriers with sphere-in-capsule structures for co-encapsulation and sequential release. J Taiwan Inst Chem Eng 2019;98:63‒9. 链接1

[147] Haw TT, Hart F, Rashidi A, Pasbakhsh P. Sustainable cementitious composites reinforced with metakaolin and halloysite nanotubes for construction and building applications. Appl Clay Sci 2020;188:105533. 链接1

[148] Farzadnia N, Abang Ali AA, Demirboga R, Anwar MP. Effect of halloysite nanoclay on mechanical properties, thermal behavior and microstructure of cement mortars. Cement Concr Res 2013;48:97‒104. 链接1

[149] Dungca JR, Edrada JEB, Eugenio VA, RASFugado, Li ESC. The combined effects of nano-montmorillonite and halloysite nanoclay to the workability and compressive strength of concrete. Int J Geomate 2019;17(59):173‒80. 链接1

[150] Owsiak Z, Sołtys A, Szta˛boroski P, Mazur M. Properties of autoclaved aerated concrete with halloysite under industrial conditions. Procedia Eng 2015;108:214‒9. 链接1

[151] García-Vázquez R, Rebitski EP, Viejo L, de los Ríos C, Darder M, García-Frutos EM. Clay-based hybrids for controlled release of 7-azaindole derivatives as neuroprotective drugs in the treatment of Alzheimer’s disease. Appl Clay Sci 2020;189:105541. 链接1

[152] Bumanis G, Vitola L, Stipniece L, Locs J, Korjakins A, Bajare D. Evaluation of industrial by-products as pozzolans: a road map for use in concrete production. Case Stud Constr Mater 2020;13:e00424. 链接1

[153] Sandalci I, Tezer MM, Bundur ZB. Immobilization of bacterial cells on natural minerals for self-healing cement-based materials. Front Built Environ 2021;‍7:655935. 链接1

[154] Han S, Jang I, Choi EK, Park W, Yi C, Chung N. Bacterial self-healing performance of coated expanded clay in concrete. J Environ Eng 2020;146(7):04020072. 链接1

[155] Akhtar A, Sarmah AK. Construction and demolition waste generation and properties of recycled aggregate concrete: a global perspective. J Clean Prod 2018;186:262‒81. 链接1

[156] Verian KP, Ashraf W, Cao Y. Properties of recycled concrete aggregate and their influence in new concrete production. Resour Conserv Recycl 2018;133:30‒49. 链接1

[157] Gupta S, Kua HW, Pang SD. Healing cement mortar by immobilization of bacteria in biochar: an integrated approach of self-healing and carbon sequestration. Cement Concr Compos 2018;86:238‒54. 链接1

[158] Doctolero JZS, Beltran AB, Uba MO, Tigue AAS, Promentilla MAB. Self-healing biogeopolymers using biochar-immobilized spores of pure- and co-cultures of bacteria. Minerals 2020;10(12):1114. 链接1

[159] Tanaka N, Stigson B. Cement technology roadmap 2009—carbon emissions reductions up to 2050. Report. Geneva: World Business Council for Sustainable Development; 2009. 链接1

[160] Van Mullem T, Anglani G, Dudek M, Vanoutrive H, Bumanis G, Litina C, et al. Addressing the need for standardization of test methods for self-healing concrete: an inter-laboratory study on concrete with macrocapsules. Sci Technol Adv Mater 2020;21(1):661‒82. 链接1

[161] De Belie N, Gruyaert E, Al-Tabbaa A, Antonaci P, Baera C, Bajare D, et al. A review of self-healing concrete for damage management of structures. Adv Mater Interfaces 2018;5(17):1800074. 链接1

[162] Palmer C. 3D printing advances on multiple fronts. Engineering 2020;6(6):590‒2. 链接1

[163] Sterling RL. Advances in underground construction help provide quality of life for modern societies. Engineering 2017;3(6):780‒1. 链接1

[164] Jia J, Lino M, Jin F, Zheng C. The cemented material dam: a new, environmentally friendly type of dam. Engineering 2016;2(4):490‒7. 链接1

[165] Takagi J, Wada A. Higher performance seismic structures for advanced cities and societies. Engineering 2019;5(2):184‒9. 链接1

[166] Wang X, Huang Y, Huang Y, Zhang J, Fang C, Yu K, et al. Laboratory and field study on the performance of microcapsule-based self-healing concrete in tunnel engineering. Constr Build Mater 2019;220:90‒101. 链接1

[167] Wiktor V, Jonkers HM. Field performance of bacteria-based repair system: pilot study in a parking garage. Case Stud Constr Mater 2015;2:11‒7. 链接1

[168] Kubantseva N, Hartel RW, Swearingen PA. Factors affecting solubility of calcium lactate in aqueous solutions. J Dairy Sci 2004;87(4):863‒7. 链接1

[169] Davies R, Teall O, Pilegis M, Kanellopoulos A, Sharma T, Jefferson A, et al. Large scale application of self-healing concrete: design, construction, and testing. Front Mater 2018;5:51. 链接1

[170] Pucinotti R. Reinforced concrete structure: non destructive in situ strength assessment of concrete. Constr Build Mater 2015;75:331‒41. 链接1

[171] Mohshin M. Structural integrity assessment by destructive testing and nondestructive testing. J Struct Technol 2017;2(3).

[172] Hou Y, Li Q, Zhang C, Lu G, Ye Z, Chen Y, et al. The state-of-the-art review on applications of intrusive sensing, image processing techniques, and machine learning methods in pavement monitoring and analysis. Engineering 2021;7(6):845‒56. 链接1

[173] Zhang Q, Barri K, Babanajad SK, Alavi AH. Real-time detection of cracks on concrete bridge decks using deep learning in the frequency domain. Engineering 2021;7(12):1786‒96. 链接1

[174] Shrivastava S, Jain S, Kumar D, Soni SL, Sharma M. A review on theranostics: an approach to targeted diagnosis and therapy. Asian J Pharm Res Dev 2019;7(2):63‒9. 链接1

[175] Lapierre FM, Schmid J, Ederer B, Ihling N, Büchs J, Huber R. Revealing nutritional requirements of MICP-relevant Sporosarcina pasteurii DSM33 for growth improvement in chemically defined and complex media. Sci Rep 2020;10(1):22448. 链接1

[176] Gat D, Tsesarsky M, Shamir D, Ronen Z. Accelerated microbial-induced CaCO3 precipitation in a defined coculture of ureolytic and non-ureolytic bacteria. Biogeosciences 2014;11(10):2561‒9. 链接1

[177] Keller L, Surette MG. Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 2006;4(4):249‒58. 链接1

[178] Goers L, Freemont P, Polizzi KM. Co-culture systems and technologies: taking synthetic biology to the next level. J R Soc Interface 2014;11(96):20140065. 链接1

[179] Momeni B, Chen CC, Hillesland KL, Waite A, Shou W. Using artificial systems to explore the ecology and evolution of symbioses. Cell Mol Life Sci 2011;68(8):1353‒68. 链接1

[180] Jiang NJ, Yoshioka H, Yamamoto K, Soga K. Ureolytic activities of a ureaseproducing bacterium and purified urease enzyme in the anoxic condition: Implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP). Ecol Eng 2016;90:96‒104. 链接1

[181] Ersan YÇ, Erguder TH. The effects of aerobic/anoxic period sequence on aerobic granulation and COD/N treatment efficiency. Bioresour Technol 2013;148:149‒56. 链接1

[182] Castagnola E, Fioredda F, Barretta MA, Pescetto L, Garaventa A, Lanino E, et al. Bacillus sphaericus bacteraemia in children with cancer: case reports and literature review. J Hosp Infect 2001;48(2):142‒5. 链接1

[183] Apetroaie-Constantin C, Mikkola R, Andersson MA, Teplova V, Suominen I, Johansson T, et al. Bacillus subtilis and B. mojavensis strains connected to food poisoning produce the heat stable toxin amylosin. J Appl Microbiol 2009;106(6):1976‒85. 链接1

[184] Strokova VV, Le Saout G, Nelubova VV, Ogurtsova YN. Composition and properties of cement system with glutaraldehyde. Mag Civ Eng 2021;‍103(3):10307.

[185] Chaurasia L, Bisht V, Singh LP, Gupta S. A novel approach of biomineralization for improving micro and macro-properties of concrete. Constr Build Mater 2019;195:340‒51. 链接1

[186] Suleiman AR, Nehdi ML. Effect of environmental exposure on autogenous self-healing of cracked cement-based materials. Cement Concr Res 2018;111:197‒208. 链接1

[187] Zhang Q, Prouty C, Zimmerman JB, Mihelcic JR. More than target 6.3: a systems approach to rethinking sustainable development goals in a resourcescarce world. Engineering 2016;2(4):481‒9. 链接1

[188] Yi Z, Zhao C. Desert, “soilization”: an eco-mechanical solution to desertification. Engineering 2016;2(3):270‒3. 链接1

[189] Li M, Fu QL, Zhang Q, Achal V, Kawasaki S. Bio-grout based on microbially induced sand solidification by means of asparaginase activity. Sci Rep 2015;5(1):16128. 链接1

[190] Sharma A, Ramkrishnan R. Study on effect of microbial induced calcite precipitates on strength of fine grained soils. Perspect Sci 2016;8:198‒202. 链接1

[191] Bisht V, Chaurasia L, Singh LP, Gupta S. Bacterially stabilized desert-sand bricks: sustainable building material. J Mater Civ Eng 2020;32(6):04020131. 链接1

[192] Boardman GD, Starbuck SM, Hudgins DB, Li X, Kuhn DD. Toxicity of ammonia to three marine fish and three marine invertebrates. Environ Toxicol 2004;19(2):134‒42. 链接1

[193] Sabater MG, Yap HT. Growth and survival of coral transplants with and without electrochemical deposition of CaCO3. J Exp Mar Biol Ecol 2002;272(2):131‒46. 链接1

[194] Strömberg SM, Lundälv T, Goreau TJ. Suitability of mineral accretion as a rehabilitation method for cold-water coral reefs. J Exp Mar Biol Ecol 2010;395(1‒2):153‒61.

[195] Precht WF. Coral reef restoration handbook. Boca Raton: CRC Press; 2006. 链接1

[196] Millison D, Countryman S. Sustainable pre-stressed concrete from seawater. In: Soibelman L, Peña-Mora F, editors. Proceedings of the International Conference on Sustainable Infrastructure 2017: Technology; 2017 Oct 26‒28; New York City, NY, USA. Reston: ASCE Press; 2017. p. 361‒72. 链接1

相关研究