期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第9卷 第2期 doi: 10.1016/j.eng.2021.11.017

电活性膜去除氯酚污染物——面向工程应用的放大策略

a State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
b State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China

收稿日期: 2021-07-14 修回日期: 2021-08-24 录用日期: 2021-11-23 发布日期: 2022-01-10

下一篇 上一篇

摘要

氯酚(CP)是一类重要的难降解污染物,对人类和其他生物具有高度毒性。电活性膜(REM)通过穿流式操作,能够强化对流传质,在电化学去除难降解污染物过程中彰显出巨大潜力。然而相关研究通常报道的是实验室规模,无法直接保证REM反应器在工程化放大中的成功运行。本研究证明了由亚氧化钛陶瓷阳极和不锈钢阴极配置的同轴管式电极(TCE)可用于大规模的CP 去除。理论和试验结果均表明,TCE构型不仅使电极表面处处正交于电场线,而且具有与电极长度成反比的欧姆电阻。此外,TCE构型可根据废水流动方向将从阳极流向阴极(AC模式)调整为从阴极流向阳极(CA模式),为CP的选择性降解创造了可控条件。单程穿流实验结果证实在CA模式下,2,4-二氯苯酚(2,4-DCP)的去除动力学常数较AC模式高一个数量级,2,4-DCP 和化学需氧量(COD)去除率分别为98%和72.5%。理论计算和实验结果表明,CA模式具有较低的反应活化能和自由能。在不增加欧姆电阻或降低活性面积的情况下,TCE构型适用于组件化策略来放大电化学反应器规模。使用三个TCE组件时,2,4-DCP的去除率达到99.4%,能耗为1.5 kW⋅h⋅m−3。本研究为REM反应器提出了一种合理的电极构型设计,为电化学去除氯酚类污染物在跨越面向工程放大的“死亡之谷”提供有效策略。

补充材料

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Moreira FC, Boaventura RAR, Brillas E, Vilar VJP. Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl Catal B 2017;202:217–61. 链接1

[ 2 ] Radjenovic J, Sedlak DL. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ Sci Technol 2015;49(19):11292–302. 链接1

[ 3 ] Zhu L, Santiago-Schübel B, Xiao H, Hollert H, Kueppers S. Electrochemical oxidation of fluoroquinolone antibiotics: mechanism, residual antibacterial activity and toxicity change. Water Res 2016;102:52–62. 链接1

[ 4 ] Guo L, Jing Y, Chaplin BP. Development and characterization of ultrafiltration TiO2 Magnéli phase reactive electrochemical membranes. Environ Sci Technol 2016;50(3):1428–36. 链接1

[ 5 ] Lin H, Peng H, Feng X, Li X, Zhao J, Yang K, et al. Energy-efficient for advanced oxidation of bio-treated landfill leachate effluent by reactive electrochemical membranes (REMs): laboratory and pilot scale studies. Water Res 2021;190:116790. 链接1

[ 6 ] Zaky AM, Chaplin BP. Porous substoichiometric TiO2 anodes as reactive electrochemical membranes for water treatment. Environ Sci Technol 2013;47 (12):6554–63. 链接1

[ 7 ] Ma J, Ma J, Zhang C, Song J, Dong W, Waite TD. Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration. Water Res 2020;168:115186. 链接1

[ 8 ] Sun M, Wang X, Winter LR, Zhao Y, Ma W, Hedtke T, et al. Electrified membranes for water treatment applications. ACS EST Eng 2021;1(4):725–52. 链接1

[ 9 ] Noël T, Cao Y, Laudadio G. The fundamentals behind the use of flow reactors in electrochemistry. Acc Chem Res 2019;52(10):2858–69. 链接1

[10] Sulaymon AH, Abbar AH. Scale-up of electrochemical reactors. In: Kleperis J, Linkov V, editors. Electrolysis. London: IntechOpen Ltd.; 2012. p. 189–202. 链接1

[11] Goodridge F, Scott K. Electrochemical process engineering. New York: Springer Publishing Co.; 1995. 链接1

[12] Walsh F, Reade G. Design and performance of electrochemical reactors for efficient synthesis and environmental treatment. Part 2. Typical reactors and their performance. Analyst 1994;119(5):797–803. 链接1

[13] Walsh FC, Ponce de León C. Progress in electrochemical flow reactors for laboratory and pilot scale processing. Electrochim Acta 2018;280:121–48. 链接1

[14] Ni XY, Liu H, Wang C, Wang WL, Xu ZB, Chen Z, et al. Comparison of carbonized and graphitized carbon fiber electrodes under flow-through electrode system (FES) for high-efficiency bacterial inactivation. Water Res 2020;168:115150. 链接1

[15] Wang J, Zhi D, Zhou H, He X, Zhang D. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode. Water Res 2018;137:324–34. 链接1

[16] Pourmahmoud N, Sadeghifar H, Torkavannejad A. A novel, state-of-the-art tubular architecture for polymer electrolyte membrane fuel cells: performance enhancement, size and cost reduction. Int J Heat Mass Transf 2017;108(Pt A):577–84. 链接1

[17] Rabuni MF, Li T, Punmeechao P, Li K. Electrode design for direct-methane micro-tubular solid oxide fuel cell (MT-SOFC). J Power Sources 2018;384:287–94. 链接1

[18] Ressel S, Laube A, Fischer S, Chica A, Flower T, Struckmann T. Performance of a vanadium redox flow battery with tubular cell design. J Power Sources 2017;355:199–205. 链接1

[19] You S, Liu B, Gao Y, Wang Y, Tang CY, Huang Y, et al. Monolithic porous Magnéli-phase Ti4O7 for electro-oxidation treatment of industrial wastewater. Electrochim Acta 2016;214:326–35. 链接1

[20] Gayen P, Chen C, Abiade JT, Chaplin BP. Electrochemical oxidation of atrazine and clothianidin on Bi-doped SnO2–TinO2n–1 electrocatalytic reactive electrochemical membranes. Environ Sci Technol 2018;52(21):12675–84. 链接1

[21] Pei S, You S, Ma J, Chen X, Ren N. Electron spin resonance evidence for electrogenerated hydroxyl radicals. Environ Sci Technol 2020;54(20):13333–43. 链接1

[22] Cˇorovic´ S, Pavlin M, Miklavcˇicˇ D. Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations. Biomed Eng Online 2007;6:37. 链接1

[23] Hankin A, Bedoya-Lora FE, Ong CK, Alexander JC, Petter F, Kelsall GH. From millimetres to metres: the critical role of current density distributions in photo-electrochemical reactor design. Energy Environ Sci 2017;10:346–60. 链接1

[24] Zhou J, Wang T, Xie X. Rationally designed tubular coaxial-electrode copper ionization cells (CECICs) harnessing non-uniform electric field for efficient water disinfection. Environ Int 2019;128:30–6. 链接1

[25] Zhou J, Wang T, Xie X. Locally enhanced electric field treatment (LEEFT) promotes the performance of ozonation for bacterial inactivation by disrupting cell membrane. Environ Sci Technol 2020;54(21):14017–25. 链接1

[26] Sun L, Wang X, Li M, Zhang S, Wang Q. Anodic titania nanotubes grown on titanium tubular electrodes. Langmuir 2014;30(10):2835–41. 链接1

[27] Perry SC, Ponce de León C, Walsh FC. Review—the design, performance and continuing development of electrochemical reactors for clean electrosynthesis. J Electrochem Soc 2020;167(15):155525. 链接1

[28] Ahn Y, Hatzell MC, Zhang F, Logan BE. Different electrode configurations to optimize performance of multi-electrode microbial fuel cells for generating power or treating domestic wastewater. J Power Sources 2014;249:440–5. 链接1

[29] Jaramillo-Gutiérrez MI, Carreño-Lizcano MI, Ruiz-Lizarazo JO, Pedraza-Avella JA, Rivero EP, Cruz-Díaz MR. Design, mathematical modelling, and numerical simulation of a novel tubular photoelectrochemical reactor and experimental validation by residence time distribution and mass transfer coefficients. Chem Eng J 2020;386:123895. 链接1

[30] Lei Y, Zhan Z, Saakes M, van der Weijden RD, Buisman CJN. Electrochemical recovery of phosphorus from wastewater using tubular stainless-steel cathode for a scalable long-term operation. Water Res 2021;199:117199. 链接1

[31] Wang AJ, Wang HC, Cheng HY, Liang B, Liu WZ, Han JL, et al. Electrochemistrystimulated environmental bioremediation: development of applicable modular electrode and system scale-up. Environ Sci Ecotech 2020;3:100050. 链接1

[32] Wang G, Liu Y, Ye J, Lin Z, Yang X. Electrochemical oxidation of methyl orange by a Magnéli phase Ti4O7 anode. Chemosphere 2020;241:125084. 链接1

[33] Deborde M, von Gunten U. Reactions of chlorine with inorganic and organic compounds during water treatment—kinetics and mechanisms: a critical review. Water Res 2008;42(1–2):13–51. 链接1

[34] Cheng X, Guo H, Li W, Yang B, Wang J, Zhang Y, et al. Metal-free carbocatalysis for persulfate activation toward nonradical oxidation: enhanced singlet oxygen generation based on active sites and electronic property. Chem Eng J 2020;396:125107. 链接1

[35] Ma Y, Gu Y, Jiang D, Mao X, Wang D. Degradation of 2,4-DCP using persulfate and iron/E-carbon micro-electrolysis coupling system. J Hazard Mater 2021;413:125381. 链接1

[36] Guo H, Kim Y. Scalable multi-electrode microbial electrolysis cells for high electric current and rapid organic removal. J Power Sources 2018;391:67–72. 链接1

[37] Martínez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev 2015;115(24):13362–407. 链接1

[38] He W, Dong Y, Li C, Han X, Liu G, Liu J, et al. Field tests of cubic-meter scale microbial electrochemical system in a municipal wastewater treatment plant. Water Res 2019;155:372–80. 链接1

相关研究