期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第13卷 第6期 doi: 10.1016/j.eng.2021.11.020

未来电力系统真空开关技术

State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China

收稿日期: 2021-05-05 修回日期: 2021-09-06 录用日期: 2021-11-16 发布日期: 2022-01-25

下一篇 上一篇

摘要

真空开关技术的发展尽管已有一百余年历史,然而近年来新技术的出现对未来输配电系统发展具有显著影响。首先,对于《京都议定书》认定的最强温室效应气体——SF6,真空开关相比SF6气体开关具有天然环保的技术特点,其在输电系统的应用可大幅降低SF6温室效应气体用量。其次,相比于现有其他交流故障电流开断技术,真空开关可实现故障电流的快速开断。目前,采用电磁斥力机构驱动的快速真空断路器,可将交流短路故障电流的开断时间,由其他常规开断技术所需的三个短路电流周波缩短至短路电流的首半波内,达到理论开断时间极限,对电网暂态运行稳定性的增强、超特高压线路输送容量的提升、输电走廊利用率的提高等具有显著意义。第三,现阶段基于快速真空开关技术的输配电设备,在直流断路器、故障电流限制、电能质量改善、发电机断路器等技术领域已获得应用,在电力系统稳定运行、节能降耗等方面,取得了显著经济社会收益。此外,借助快速真空开关合分闸时间分散性低的特点,电力系统可实现开关的精准相控操作,大幅降低系统电磁暂态冲击,实现电能传输与控制的平稳过渡。相控快速真空开关技术有望改变未来电力系统的“基因”。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

参考文献

[ 1 ] Lu X, Zhang S, Xing J, Wang Y, Chen W, Ding D, et al. Progress of air pollution control in China and its challenges and opportunities in the ecological civilization era. Engineering 2020;6(12):1423‒31. 链接1

[ 2 ] Reilly J, Prinn R, Harnisch J, Fitzmaurice J, Jacoby H, Kicklighter D, et al. Multigas assessment of the Kyoto Protocol. Nature 1999;401(6753):549‒55. 链接1

[ 3 ] Nakanishi K, editor. Switching phenomena in high-voltage circuit breakers. New York City: CRC Press; 1991.

[ 4 ] Smeets R, van der Sluis L, Kapetanovic´ M, Peelo DF, Janssen A. Switching in electrical transmission and distribution systems. West Sussex: John Wiley & Sons Ltd.; 2015. 链接1

[ 5 ] Hiroki I. Switching equipment. Cham: Springer; 2019. 链接1

[ 6 ] Working Group A3.27. The impact of the application of vacuum switchgear at transmission voltages. Pairs: CIGRE; 2014.

[ 7 ] Farrall GA. Cranberg hypothesis of vacuum breakdown as applied to impulse voltages. J Appl Phys 1962;33(1):96‒9. 链接1

[ 8 ] Kimblin CW, Edels H. Electrical conductance decay of interrupted arc columns. Br J Appl Phys 1966;17(12):1607‒19. 链接1

[ 9 ] Gellert B, Schade E, Dullni E. Measurement of particles and vapor density after high-current vacuum arcs by laser techniques. IEEE Trans Plasm Sci 1987;15(5): 545‒51. 链接1

[10] Slade PG. The vacuum interrupter: theory, design, and application. 2nd ed. Boca Raton: CRC Press; 2021. 链接1

[11] Enholm OA, inventor. Device for transforming and controlling electric currents. United States patent US 441542. 1890 Nov.

[12] Sorensen RW, Mendenhall HE. Vacuum switching experiments at California Institute of Technology. Trans Am Inst Electr Eng 1926;XLV:1102‒7. 链接1

[13] Compton KT. The electric arc. Trans Am Inst Electr Eng 1927;XLVI:868‒83. 链接1

[14] Tanberg R. Motion of an electric arc in a magnetic field under low gas pressure. Nature 1929;124(3123):371‒2. 链接1

[15] Tanberg R. On the cathode of an arc drawn in vacuum. Phys Rev 1930;35(9):1080‒9. 链接1

[16] Tanberg R, Berkey WE. On the temperature of cathode in vacuum arc. Phys Rev 1931;38(2):296‒304. 链接1

[17] Berkey WE, Mason RC. Measurements on the vapor stream from the cathode of a vacuum arc. Phys Rev 1931;38(5):943‒7. 链接1

[18] Jennings JE, Schwager AC, Ross HC. Vacuum switches for power systems. Electr Eng 1956;75(4):350‒4. 链接1

[19] Homma M, Sakaki M, Kaneko E, Yanabu S. History of vacuum circuit breakers and recent developments in Japan. IEEE Trans Dielect El In 2006;13(1):85‒92. 链接1

[20] Rowley RE. High voltage oil circuit breakers. Electr Eng 1932;51(8):585. 链接1

[21] Prince DC. The theory of oil blast circuit breakers. Electr Eng 1932;51(1):39. 链接1

[22] Johnson FB, Friedrich RE. Oil circuit breaker for 7 500 000-kVA service. Electr Eng 1952;71(1):37. 链接1

[23] Yanabu S, Satoh Y, Tamagawa T, Kaneko E, Sohma S. Ten years’ experience in axial magnetic field-type vacuum interrupters. IEEE Trans Power Deliv 1986;1(4):202‒8. 链接1

[24] Latham RV, editor. High voltage vacuum insulation: basic concepts and technological practices. San Diego: Academic Press Inc.; 1995.

[25] Falkingham LT, Waldron M. Vacuum for HV applications—perhaps not so new?—Thirty years service experience of 132 kV vacuum circuit breaker. In: Proceedings of 2006 International Symposium on Discharges and Electrical Insulation in Vacuum; 2006 Sep 25‒29; Matsue, Japan. New York City: IEEE; 2006. p. 200‒3. 链接1

[26] Liu Z, Wang J, Geng Y, Wang Z. Switching arc phenomena in transmission voltage level vacuum circuit breaker. Singapore: Xi’an Jiaotong University Press and Springer Nature Singapore Pte Ltd.; 2021. 链接1

[27] Kimblin CW, Holmes FA, Gorman JG, Slade PG. Extinction of a vacuum arc by application of a transverse magnetic field. J Phys Colloques 1979;40:413‒4. 链接1

[28] Liu Z, Xiu S, Wang T, Zhao L, Zhang Y, Feng D. Study on transition process of vacuumarc under transversemagnetic field. Contrib PlasmPhys 2019;59(8):1‒9. 链接1

[29] Schulman MB, Bindas JA. Evaluation of AC axial magnetic fields needed to prevent anode spots in vacuum arcs between opening contacts. IEEE Trans Comp Pack Man Part A 1994;17(1):53‒7. 链接1

[30] Yanabu S, Kaneko E, Koike H, Tsutsumi T, Tamagawa T. The applications of axial magnetic-field electrodes to vacuum circuit-breakers. IEEE Trans Power Appar Syst 1983;102(5):1395‒402. 链接1

[31] Liu Z, Xiu S, Wang T, Zhao L, Zhang Y, Li R. Experimental and simulation research on influence of axial magnetic field components on vacuum arc between transverse magnetic field contacts. IEEE Trans Plasm Sci 2019;47(3): 1648‒56. 链接1

[32] Ma H, Wang Z, Shen J, Geng Y, Wang J, Liu Z. Transformation characteristics of high-current vacuum arcs with still-spaced contacts under TMF‒AMF Combined Magnetic Fields. IEEE Trans Plasm Sci 2019;47(8):3540‒8. 链接1

[33] Yao X, Wang J, Geng Y, Liu Z, Zhai X. Determination of opening velocities for vacuum circuit breakers at transmission voltage. In: Proceedings of 2016 27th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV); 2016 Sep 18‒23; Suzhou, China. New York: IEEE; 2016. p. 1‒4. 链接1

[34] Zhang B, Ren L, Ding J, Wang J, Liu Z, Geng Y, et al. A relationship between minimum arcing interrupting capability and opening velocity of vacuum interrupters in short-circuit current interruption. IEEE Trans Power Delivery 2018;33(6):2822‒8. 链接1

[35] Heinz T, Koletzko M, Giere S, Wenzel N, Wethekam S. Control of cacuum arcs in high-voltage vacuum interrupters by suitable stroke trajectories of opening AMF contacts. In: Proceedings of 2018 28th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV); 2018 Sep 23‒28; Greifswald, Germany. New York: IEEE; 2018. p. 535‒8. 链接1

[36] Sun L, Yu L, Liu Z, Wang J, Geng Y. An opening displacement curve characteristic fetermined by high-current anode phenomena of a vacuum interrupter. IEEE Trans Power Delivery 2013;28(4):2585‒93. 链接1

[37] Li H, Lin X, Xu J. Design and dynamic performance analysis of permanent magnet swing angle motor operating mechanism for 126 kV vacuum circuit breaker. Power Syst Technol 2014;38(6):1664‒9. 链接1

[38] Li Y, Lin X, Xu J. Design of a novel permanent magnet brushless DC motordriven operating mechanism for high-voltage circuit breaker and its dynamic simulation. Power Syst Technol 2010;34(1):185‒9.

[39] Bissal A, Magnusson J, Engdahl G. Comparison of two ultra-fast actuator concepts. IEEE Trans Magn 2012;48(11):3315‒8. 链接1

[40] Fang S, Xia M, Lin H, Ho S. Analysis and design of a high-speed permanent magnet characteristic actuator using eddy current effect for high-voltage vacuum circuit breaker. IET Electr Power App 2016;10(4):268‒75. 链接1

[41] Yao X, Guan C, Wang J, Liu Z, Ai S, Ma K, et al. Technology of AC short-circuit current controlled fast vacuum breaking in a short arcing time. In: Proceedings of 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD); 2020 Oct 16‒18; Tianjin, China. New York: IEEE; 2020. p. 1‒2. 链接1

[42] Working Group A3.10. Fault current limiters in electrical medium and high voltage systems. Pairs: CIGRE; 2003.

[43] Chen W, Zeng R, He J, Wu Y, Wei X, Fang T, et al. Development and prospect of direct-current circuit breaker in China. High Volt 2021;6(1):1‒15. 链接1

[44] Pan Y, Yuan Z, Chen L, Xu M, Liu L. Research on the coupling mechanical high voltage DC circuit breaker. Proc Chin Soc Elect Eng 2018;24:7113‒20. Chinese.

[45] Huang L, Fang C, Li W, Tang X, Zhang N, Chen J. Research on motion characteristics and stability of 500 V fast mechanical switch. In: Proceedings of 3rd International Conference on Mechanical, Electric and Industrial Engineering (ICMEIE); 2020 Jun 18‒19; online. IOP; 2020. p. 012094.

[46] Feng L, Gou R, Zhuo F, Yang X, Zhang F. Research on the breaking branch for a hybrid DC circuit breaker in ±500 kV voltage-sourced converter high-voltage direct current grid. IET Power Electron 2020;13(16):3560‒70. 链接1

[47] Ma K, Yao X, Ai S, Wang S, Liu Z, Wang J, et al. Development and test of a 252 kV multi-breaks bus-tie fast vacuum circuit breaker. In: Proceedings of 2019 5th International Conference on Electric Power Equipment-Switching Technology (ICEPE-ST); 2019 Oct 13‒16; Kitakyushu, Japan. New York: IEEE; 2019. p. 590‒3. 链接1

[48] Ai S, Yu X, Huang Y, Yang F, Fan Y, Li X. Study on voltage distribution characteristic of a 363 kV fast multi-break vacuum circuit breaker. J Eng 2019;16:2693‒7. 链接1

[49] Yu X, Yang F, Li X, Ai S, Huang Y, Fan Y, et al. Static voltage sharing design of a sextuple-break 363 kV vacuum circuit breaker. Energies 2019;12(13):1‒12. 链接1

[50] Yao X, Wang J, Geng Y, Yan J, Liu Z, Yao J, et al. Development and type test of a single-break 126-kV/40-kA‒2500-A vacuum circuit breaker. IEEE Trans Power Deliver 2016;31(1):182‒90. 链接1

[51] Yoshioka Y. Present status of power circuit breaker and its future. IEEJ Trans Power Energy 2006;126(7):653‒6. 链接1

[52] Slade PG, Voshall RE, Wayland PO, Bamford AJ, McCracken GA, Yeckley RN, et al. The development of a vacuum interrupter retrofit for the upgrading and life extension of 121 kV‒145 kV oil circuit breakers. IEEE Trans Power Delivery 1991;6(3):1124‒31. 链接1

[53] Yanabu S, Zaima E, Hasegawa T. Historical review of high voltage switchgear developments in the 20th century for power transmission and distribution system in Japan. IEEE Trans Power Delivery 2006;21(2):659‒64. 链接1

[54] Liao M, Duan X, Zou J, Fan X, Sun H. Dielectric strength and statistical property of single and triple-break vacuum interrupters in series. IEEE Trans Dielectr El In 2007;14(3):600‒5. 链接1

[55] Liu Z, Wang J, Xiu S, Wang Z, Yuan S, Jin L, et al. Development of high-voltage vacuum circuit breakers in China. IEEE Trans Plasma Sci 2007;35(4):856‒65. 链接1

[56] Zhang Y, Liu Z, Geng Y, Yang H. Mechanism of impulse voltage breakdown in high voltage vacuum interrupters with long contact gap. IEEE Trans Dielectr El In 2014;21(2):906‒12. 链接1

[57] Slade P. Growth of vacuum interrupter application in distribution switchgear. In: Proceedings of 1998 5th International Conference on Trends in Distribution Switchgear: 400 V‒145 kV for Utilities and Private Networks; 1998 Nov 10‒ 12; London, UK. IET; 1998. p. 155‒60. 链接1

[58] Liu D, Wang J, Xiu S, Liu Z, Wang Z, Ren Y. Research on 750 kV vacuum circuit breaker composed of several vacuum interrupts in series. In: Proceedings of 21st International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV); 2004 Sep 27‒Oct 1; Yalta, Ukraine. New York City: IEEE; 2004. p. 315‒8. 链接1

[59] Wang Z, Sun L, He S, Geng Y, Liu Z. A permanent magnetic actuator for 126 kV vacuum circuit breakers. IEEE Trans Magn 2014;50(3):129‒35. 链接1

[60] Basu S, Srivastava K. Electromagnetic forces on a metal disk in an alternating magnetic field. IEEE Trans Power Appar Syst 1969;88(8):1281‒5. 链接1

[61] Basu S, Srivastava K. Analysis of a fast acting circuit breaker mechanism, Part I: electrical aspects. IEEE Trans Power Appar Syst 1972;91(3):1197‒203. 链接1

[62] Basu S, Srivastava K. Analysis of a fast acting circuit breaker mechanism, Part II: thermal and mechanical aspects. IEEE Trans Power Appar Syst 1972;91(3): 1203‒11. 链接1

[63] Roodenburg B, Kaanders M, Huijser T. First results from an electro‒magnetic (EM) drive high acceleration of a circuit breaker contact for a hybrid switch. In: Proceedings of 2005 European Conference on Power Electronics and Applications; 2005 Sep 11‒14; Dresden, Germany. New York: IEEE; 2005. p. 1‒10. 链接1

[64] Lou J, Li Q, Sun Q, Liu W, Qian J. Dynamic characteristics simulation and optimal design of the fast electromagnetic repulsion mechanism. Proc CSEE 2005;25(16):23‒9. Chinese.

[65] Wang Z, He J, Yin X, Lu J, Hui D, Zhang H. 10 kV High speed vacuum switch with electromagnetic repulsion mechanism. Trans Chin Electrotech Soc 2009;24(11):68‒75. Chinese.

[66] Tsukima M, Takeuchi T, Koyama K, Yoshiyasu H. Development of a high-speed electromagnetic repulsion mechanism for high-voltage vacuum circuit breakers. Electr Eng Jpn 2008;163(1):34‒40. 链接1

[67] Zeng N, Fang C, Li W, Yu J, Li T, Ren X, et al. Research on electromagnetic damping for fast mechanical switch of HVDC circuit breaker. High Voltage Appar 2020;56(3):9‒16. Chinese.

[68] Wu Y, Wu Y, Rong M, Yang F, Zhong J, Li M, et al. A new Thomson coil actuator: principle and analysis. IEEE Trans Compon Packag Manuf Technol 2015;5(11): 1644‒55. 链接1

[69] Yao X, Guan C, Ding J, Ai S, Ma K, Wang J, et al. Controlled fast vacuum breaking of an AC short-circuit current in a short-arcing time. IEEE Trans Appl Supercond 2021;31(8):1‒5. 链接1

[70] Guan C, Yao X, Zhang J, Zhang L, Liu Z, Wang J, et al. Research on the contact bounce during the closing process of a repulsion mechanism applied in a superconductivity direct-current vacuum circuit breaker. IEEE Trans Appl Supercond 2021;31(8):1‒5. 链接1

[71] Fang S, Yuan Z, Wei X, Gao C, Zhang S, Zhang N, et al. Force characteristic of polyurethane material and design of polyurethane buffer. High Voltage Appar 2015;51(11):91‒6. Chinese.

[72] Wen W, Huang Y, Al-Dweikat M, Zhang Z, Cheng T, Gao S, et al. Research on operating mechanism for ultra-fast 40.5-kV vacuum switches. IEEE Trans Power Delivery 2015;30(6):2553‒60. 链接1

[73] Wu Y, Wu Y, Yang F, Rong M, Hu Y. Bidirectional current injection MVDC circuit breaker: principle and analysis. IEEE Trans Emerg Sel Topics Power Electron 2020;8(2):1536‒46. 链接1

[74] Wu Y, Hu Y, Wu Y, Rong M, Yi Q. Investigation of an active current injection DC circuit breaker based on a magnetic induction current commutation module. IEEE Trans Power Delivery 2018;33(4):1809‒17. 链接1

[75] Wen W, Huang Y, Sun Y, Wu J, Al-Dweikat M, Liu W. Research on current commutation measures for hybrid DC circuit breakers. IEEE Trans Power Delivery 2016;31(4):1456‒63. 链接1

[76] Shi W, Cao D, Yang B, Lv W, Wang W, Liu B. 500 kV commutation-based hybrid HVDC circuit breaker. Auto Electric Power Syst 2018;42(7):102‒7. Chinese.

[77] Zhou W, Wei X, Zhang S, Tang G, He Z, Zheng J, et al. Development and test of a 200 kV full-bridge based hybrid HVDC breaker. In: Proceedings of 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCEEurope); 2015 Sep 8‒10; Geneva, Switzerland. New York: IEEE; 2015. p. 1‒7. 链接1

[78] Qiu P, Huang X, Wang Y, Lu Y, Chen Q, Xu F. Application of high voltage DC circuit breaker in Zhoushan VSC-HVDC transmission project. High Voltage Eng 2018;44(2):403‒8. Chinese.

[79] Ichikawa M, Okazaki M. A magnetic shielding type superconducting fault current limiter using a Bi2212 thick film cylinder. IEEE Trans Appl Supercond 1995;5(2):1067‒70. 链接1

[80] Karasik BS, Milostnaya II, Zorin MA, Elantev AI, Gol’tsman GN, Gershenzon EM. High speed current switching of homogeneous YBaCuO film between superconducting and resistive states. IEEE Trans Appl Supercond 1995; 5(2):3042‒5. 链接1

[81] Tang YJ, Kato T, Hayakawa N, Yokomizu Y, Matsumura T, Okubo H, et al. Development of the prospective power transmission model system integrated under superconducting environment-PROMISE. IEEE Trans Appl Supercond 1995;5(2):945‒8. 链接1

[82] Ai S, Gao F, Huang Y, Fan Y, Li Y, Wang C. Development and short-circuit experiment of 330 kV switch-type no-loss fault current limiter. Smart Grid 2015;4:354‒9. Chinese. 链接1

[83] Huang Y, Hu X, Ai S, Fan Y, Wu M. An economical fault current limiter based on fast circuit breaker. In: Proceedings of 2017 International Conference on Computer System, Electronics and Control (ICCSEC); 2017 Dec 25‒27; Dalian, China. New York: IEEE; 2017. p. 1595‒8. 链接1

[84] Gao F, Ai S, Ding R, Huang Y. Development and experiment of fast breaker-type fault current limiter. In: Proceedings of 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT); 2015 Nov 26‒29; Changsha, China. New York City: IEEE; 2015. p. 1790‒4. 链接1

[85] Wu K, Yuan Z, Ye J, Liu J, Mo W, Wang Y, et al. Voltage distribution analysis of high coupled split reactor in 500 kV AC fault current limiter. IEEE Access 2020;8:185804‒15. 链接1

[86] Li J, Zheng M, Cao H, Zhao Z, Gu Y, Li T, et al. Current limiting ability and overvoltage analysis of variable impedance transformer. In: Proceedings of 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC); 2016 Oct 25‒28; Xi’an, China. New York City: IEEE; 2016. p. 557‒60. 链接1

[87] Ai S, Ma K, He H, Du W, Sun L, Jiao Z, et al. Research on integrated variable impedance energy-saving transformer. High Voltage Eng 2016;42(4):1028‒34. Chinese.

[88] Zhang L, Ai S, Gao F, Zhou X, Huang Y, Fan Y. Comprehensive energy savings evaluation of the fixed series capacitor compensation in distribution network. Power Syst Tech 2016;40(1):276‒82. Chinese.

[89] Ma K, Wang S, Wang S, Jiao Z, Huang H, Yao X. Research on voltage sag suppression technique based on CLR and artificial current zero interruption of FVCB. In: Proceedings of 2019 IEEE 8th International Conference on Advanced Power System Automation and Protection (APAP); 2019 Oct 21‒24; Xi’an, China. New York City: IEEE; 2019. p. 1588‒92. 链接1

[90] Lu H, Zhang J, Yang F, Xu B, Liu Z, Zheng Z, et al. Improved secant method for getting proper initial magnetization in transformer DC bias simulation. Int J Electr Power Energy Syst 2018;103:50‒7. 链接1

相关研究