期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第25卷 第6期 doi: 10.1016/j.eng.2021.12.016

过硫酸盐诱导的缺陷氮化碳中三配位氮(N3C)空位增强光催化产过氧化氢

a College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
b Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China

收稿日期: 2021-08-10 修回日期: 2021-12-03 录用日期: 2021-12-16 发布日期: 2022-02-25

下一篇 上一篇

摘要

近年来,原位光催化可持续过氧化氢合成技术受到越来越多的关注。其中石墨氮化碳(g-C3N4)被认为是最有前途的合成过氧化氢的光催化剂之一;并且,在g-C3N4中引入氮空位已被证明是提高其光催化活性的有效策略。然而,由于g-C3N4中不同类型的氮空位对光催化活性的影响方式不同,氮空位的光催化作用机制尚不清楚。在此,本文提出了一种简便的过硫酸钠共晶聚合方法,制备了具有丰富三配位氮空位(N3C)的g-C3N4。这种类型的氮空位在g-C3N4光催化产过氧化氢的研究中尚未得到重视。本研究的结果表明,在g-C3N4中引入N3C空位可以成功地拓宽光吸收范围,抑制光激发电荷的重组,增强O2的吸附和活化。富含N3C空位的g-C3N4的光催化过氧化氢产量是原始g-C3N4的4.5倍。本研究提出了在g-C3N4中引入N3C空位的新策略,为开发光催化产过氧化氢的活性催化剂提供了一种新方法。

补充材料

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Edwards JK, Solsona B, Ntainjua EN, Carley AF, Herzing AA, Kiely CJ, et al. Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 2009;323(5917):1037‒41. 链接1

[ 2 ] Lu Z, Chen G, Siahrostami S, Chen Z, Liu K, Xie J, et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat Catal 2018;1:156‒62. 链接1

[ 3 ] Su H, Christodoulatos C, Smolinski B, Arienti P, O’Connor G, Meng X. Advanced oxidation process for DNAN using UV/H2O2. Engineering 2019;5(5):849‒54. 链接1

[ 4 ] Fan W, Zhang B, Wang X, Ma W, Li D, Wang Z, et al. Efficient hydrogen peroxide synthesis by metal-free polyterthiophene via photoelectrocatalytic dioxygen reduction. Energy Environ Sci 2020;13:238‒45. 链接1

[ 5 ] Xia C, Xia Y, Zhu P, Fan L, Wang H. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 2019;366(6462):226‒31. 链接1

[ 6 ] Sun Y, Han L, Strasser P. A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem Soc Rev 2020;49(18):6605‒31. 链接1

[ 7 ] Wang X, Wang F, Sang Y, Liu H. Full-spectrum solar-light-activated photocatalysts for light‒chemical energy conversion. Adv Energy Mater 2017;7(23):1700473. 链接1

[ 8 ] Kormann C, Bahnemann DW, Hoffmann MR. Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand. Environ Sci Technol 1988;22(7):798‒806. 链接1

[ 9 ] Tsukamoto D, Shiro A, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, et al. Photocatalytic H2O2 production from ethanol/O2 system using TiO2 loaded with Au‒Ag bimetallic alloy nanoparticles. ACS Catal 2012;2(4):599‒603. 链接1

[10] Hirakawa H, Shiota S, Shiraishi Y, Sakamoto H, Ichikawa S, Hirai T. Au nanoparticles supported on BiVO4: effective inorganic photocatalysts for H2O2 production fromwater and O2 under visible light. ACS Catal 2016;6(8):4976‒82. 链接1

[11] Isaka Y, Kondo Y, Kawase Y, Kuwahara Y, Mori K, Yamashita H. Photocatalytic production of hydrogen peroxide through selective two-electron reduction of dioxygen utilizing amine-functionalized MIL-125 deposited with nickel oxide nanoparticles. Chem Commun 2018;54(67):9270‒3. 链接1

[12] Wu Q, Cao J, Wang X, Liu Y, Zhao Y, Wang H, et al. A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater. Nat Commun 2021;12:483. 链接1

[13] Hou H, Zeng X, Zhang X. Production of hydrogen peroxide by photocatalytic processes. Angew Chem Int Ed Engl 2020;59(40):17356‒76. 链接1

[14] Shiraishi Y, Takii T, Hagi T, Mori S, Kofuji Y, Kitagawa Y, et al. Resorcinolformaldehyde resins as metal-free semiconductor photocatalysts for solar-tohydrogen peroxide energy conversion. Nat Mater 2019;18(9):985‒93. 链接1

[15] Xie H, Zheng Y, Guo X, Liu Y, Zhang Z, Zhao J, et al. Rapid microwave synthesis of mesoporous oxygen-doped g-C3N4 with carbon vacancies for efficient photocatalytic H2O2 production. ACS Sustain Chem Eng 2021;9(19):6788‒98. 链接1

[16] Wu L, An S, Song YF. Heteropolyacids-immobilized graphitic carbon nitride: highly efficient photo-oxidation of benzyl alcohol in the aqueous phase. Engineering 2021;7(1):94‒102. 链接1

[17] Qian X, Wu Y, Kan M, Fang M, Yue D, Zeng J, et al. FeOOH quantum dots coupled g-C3N4 for visible light driving photo-Fenton degradation of organic pollutants. Appl Catal B 2018;237:513‒20. 链接1

[18] Zhang J, Jing B, Tang Z, Ao Z, Xia D, Zhu M, et al. Experimental and DFT insights into the visible-light driving metal-free C3N5 activated persulfate system for efficient water purification. Appl Catal B 2021;289:120023. 链接1

[19] Goclon J, Winkler K. Computational insight into the mechanism of O2 to H2O2 reduction on amino-groups-containing g-C3N4. Appl Surf Sci 2018;462:134‒41. 链接1

[20] Kumar A, Raizada P, Hosseini-Bandegharaei A, Thakur VK, Nguyen VH, Singh P. C-, N-vacancy defect engineered polymeric carbon nitride towards photocatalysis: viewpoints and challenges. JMater ChemAMater Energy Sustain 2021;9:111‒53. 链接1

[21] Yang C, Xue Z, Qin J, Sawangphruk M, Zhang X, Liu R. Heterogeneous structural defects to prompt charge shuttle in g-C3N4 plane for boosting visible-light photocatalytic activity. Appl Catal B 2019;259:118094. 链接1

[22] Yu H, Shi R, Zhao Y, Bian T, Zhao Y, Zhou C, et al. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv Mater 2017;29(16):1605148. 链接1

[23] Tian J, Wang D, Li S, Pei Y, Qiao M, Li ZH, et al. KOH-assisted band engineering of polymeric carbon nitride for visible light photocatalytic oxygen reduction to hydrogen peroxide. ACS Sustain Chem Eng 2020;8(1):594‒603. 链接1

[24] Zhang G, Lin L, Li G, Zhang Y, Savateev A, Zafeiratos S, et al. Ionothermal synthesis of triazine-heptazine-based copolymers with apparent quantum yields of 60% at 420 nm for solar hydrogen production from “sea water.” Angew Chem Int Ed Engl 2018;57(30):9372‒6. 链接1

[25] Moon G, Fujitsuka M, Kim S, Majima T, Wang X, Choi W. Eco-friendly photochemical production of H2O2 through O2 reduction over carbon nitride frameworks incorporated with multiple heteroelements. ACS Catal 2017;7(4):2886‒95. 链接1

[26] Zhang P, Tong Y, Liu Y, Vequizo JJM, Sun H, Yang C, et al. Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride. Angew Chem Int Ed 2020;59(37):16209‒17. 链接1

[27] Wu S, Yu H, Chen S, Quan X. Enhanced Photocatalytic H2O2 production over carbon nitride by doping and defect engineering. ACS Catal 2020;10(24):14380‒9. 链接1

[28] Feng C, Tang L, Deng Y, Wang J, Luo J, Liu Y, et al. Synthesis of leaf-vein-like g-C3N4 with tunable band structures and charge transfer properties for selective photocatalytic H2O2 evolution. Adv Funct Mater 2020;30(39):2001922. 链接1

[29] Xie Y, Li Y, Huang Z, Zhang J, Jia X, Wang XS, et al. Two types of cooperative nitrogen vacancies in polymeric carbon nitride for efficient solar-driven H2O2 evolution. Appl Catal B 2020;265:118581. 链接1

[30] Nguyen CC, Do TO. Engineering the high concentration of N3C nitrogen vacancies toward strong solar light-driven photocatalyst-based g-C3N4. ACS Appl Energy Mater 2018;1(9):4716‒23. 链接1

[31] Duan Y, Wang Y, Gan L, Meng J, Feng Y, Wang K, et al. Amorphous carbon nitride with three coordinate nitrogen (N3C) vacancies for exceptional NOx abatement in visible light. Adv Energy Mater 2021;11(19):2004001. 链接1

[32] Furukawa S, Shishido T, Teramura K, Tanaka T. Photocatalytic oxidation of alcohols over TiO2 covered with Nb2O5. ACS Catal 2012;2(1):175‒9. 链接1

[33] Miao W, Liu Y, Chen X, Zhao Y, Mao S. Tuning layered Fe-doped g-C3N4 structure through pyrolysis for enhanced fenton and photo-fenton activities. Carbon 2020;159:461‒70. 链接1

[34] Yuan D, Ding J, Zhou J, Wang L, Wan H, Dai WL, et al. Graphite carbon nitride nanosheets decorated with ZIF-8 nanoparticles: effects of the preparation method and their special hybrid structures on the photocatalytic performance. J Alloys Compd 2018;762:98‒108. 链接1

[35] Zhang H, Jia L, Wu P, Xu R, He J, Jiang W. Improved H2O2 photogeneration by KOH-doped g-C3N4 under visible light irradiation due to synergistic effect of N defects and K modification. Appl Surf Sci 2020;527:146584. 链接1

[36] Shen JS, Cai QG, Jiang YB, Zhang HW. Anion-triggered melamine based selfassembly and hydrogel. Chem Commun 2010;46:6786‒8. 链接1

[37] Huang ZF, Song J, Pan L, Wang Z, Zhang X, Zou JJ, et al. Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy 2015;12:646‒56. 链接1

[38] Dong F, Ou M, Jiang Y, Guo S, Wu Z. Efficient and durable visible light photocatalytic performance of porous carbon nitride nanosheets for air purification. Ind Eng Chem Res 2014;53(6):2318‒30. 链接1

[39] Chen Z, Sun P, Fan B, Liu Q, Zhang Z, Fang X. Textural and electronic structure engineering of carbon nitride via doping with p-deficient aromatic pyridine ring for improving photocatalytic activity. Appl Catal B 2015;170‒171:10‒6. 链接1

[40] Shi L, Yang L, Zhou W, Liu Y, Yin L, Hai X, et al. Photoassisted construction of holey defective g-C3N4 photocatalysts for efficient visible-light-driven H2O2 production. Small 2018;14(9):1703142. 链接1

[41] Cheng J, Hu Z, Lv K, Wu X, Li Q, Li Y, et al. Drastic promoting the visible photoreactivity of layered carbon nitride by polymerization of dicyandiamide at high pressure. Appl Catal B 2018;232:330‒9. 链接1

[42] Miao W, Liu Y, Wang D, Du N, Ye Z, Hou Y, et al. The role of Fe‒Nx single-atom catalytic sites in peroxymonosulfate activation: formation of surface-activated complex and non-radical pathways. Chem Eng J 2021;423:130250. 链接1

[43] Savateev A, Pronkin S, Epping JD, Willinger MG, Wolff C, Neher D, et al. Potassium poly(heptazine imides) from aminotetrazoles: shifting band gaps of carbon nitride-like materials for more efficient solar hydrogen and oxygen evolution. Chem Cat Chem 2017;9(1):167‒74. 链接1

[44] Wang Y, Meng D, Zhao X. Visible-light-driven H2O2 production from O2 reduction with nitrogen vacancy-rich and porous graphitic carbon nitride. Appl Catal B 2020;273:119064. 链接1

[45] Deng Y, Tang L, Zeng G, Zhu Z, Yan M, Zhou Y, et al. Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: performance and reaction mechanism. Appl Catal B 2017;203:343‒54. 链接1

[46] Zhu X, Yang J, Zhu X, Yuan J, Zhou M, She X, et al. Exploring deep effects of atomic vacancies on activating CO2 photoreduction via rationally designing indium oxide photocatalysts. Chem Eng J 2021;422:129888. 链接1

[47] Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015;347(6225):970‒4. 链接1

[48] Niu P, Yin LC, Yang YQ, Liu G, Cheng HM. Increasing the visible light absorption of graphitic carbon nitride (melon) photocatalysts by homogeneous selfmodification with nitrogen vacancies. Adv Mater 2014;26(47):8046‒52. 链接1

[49] Xiong J, Li X, Huang J, Gao X, Chen Z, Liu J, et al. CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production. Appl Catal B 2020;266:118602. 链接1

[50] Liu Y, Xie C, Li H, Chen H, Zou T, Zeng D. Improvement of gaseous pollutant photocatalysis with WO3/TiO2 heterojunctional-electrical layered system. J Hazard Mater 2011;196:52‒8. 链接1

[51] Zhang J, Zheng L, Wang F, Chen C, Wu H, Leghari SAK, et al. The critical role of furfural alcohol in photocatalytic H2O2 production on TiO2. Appl Catal B 2020;269:118770. 链接1

[52] Wang R, Pan K, Han D, Jiang J, Xiang C, Huang Z, et al. Solar-driven H2O2 generation from H2O and O2 using earth-abundant mixed-metal oxide@carbon nitride photocatalysts. ChemSusChem 2016;9(17):2470‒9. 链接1

[53] Zheng L, Su H, Zhang J, Walekar LS, Vafaei Molamahmood H, Zhou B, et al. Highly selective photocatalytic production of H2O2 on sulfur and nitrogen codoped graphene quantum dots tuned TiO2. Appl Catal B 2018;239:475‒84. 链接1

[54] Wang D, Li Q, Miao W, Liu Y, Du N, Mao S. One-pot synthesis of ultrafine NiO loaded and Ti3+ in-situ doped TiO2 induced by cyclodextrin for efficient visible-light photodegradation of hydrophobic pollutants. Chem Eng J 2020;402:126211. 链接1

[55] Chu C, Miao W, Li Q, Wang D, Liu Y, Mao S. Highly efficient photocatalytic H2O2 production with cyano and SnO2 co-modified g-C3N4. Chem Eng J 2022;428:132531. 链接1

相关研究