期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第17卷 第10期 doi: 10.1016/j.eng.2021.12.023

力学超构材料的结构设计与增材制造研究进展

a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
b Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 90095, USA

收稿日期: 2021-05-18 修回日期: 2021-09-04 录用日期: 2022-03-28 发布日期: 2022-05-29

下一篇 上一篇

摘要

力学超构材料可以被定义为一类结构材料,它前所未有的力学性能源自人工结构设计而非其组成材料。虽然宏观尺度和简单设计的结构可以通过传统的自上而下方式来制备,但许多不同尺度下的复杂设计仍然难以实现。增材制造(AM)的最新进展导致了许多新的超构材料理念的实现。AM方法能够制造具有高精度、极其复杂和高特征保真度的微尺度结构,使力学超构材料的快速发展成为可能,并大大降低了设计计算和实验验证周期。本文首先基于所需的力学性能详细地回顾了各种拓扑结构,包括刚度、强度和负泊松比超构材料,然后讨论了能够制造这些超构材料的AM技术。最后,我们讨论了目前面临的挑战,并提出了AM和力学超构材料的未来发展方向。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

参考文献

[ 1 ] Chen H, Chan CT, Sheng P. Transformation optics and metamaterials. Nat Mater 2010;9(5):387‒96. 链接1

[ 2 ] Chen HT, O’Hara JF, Azad AK, Taylor AJ, Averitt RD, Shrekenhamer DB, et al. Experimental demonstration of frequency-agile terahertz metamaterials. Nat Photon 2008;2(5):295‒8. 链接1

[ 3 ] Soukoulis CM, Wegener M. Optical metamaterials—more bulky and less lossy. Science 2010;330(6011):1633‒4. 链接1

[ 4 ] Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, et al. Threedimensional optical metamaterial with a negative refractive index. Nature 2008;455(7211):376‒9. 链接1

[ 5 ] Zhao Y, Belkin MA, Alù A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat Commun 2012;3(1):870. 链接1

[ 6 ] Lakes R. Foam structures with a negative Poisson’s ratio. Science 1987;235(4792):1038‒40. 链接1

[ 7 ] Greaves GN, Greer AL, Lakes RS, Rouxel T. Poisson’s ratio and modern materials. Nat Mater 2011;10(11):823‍‒‍37. Corrected in: Nat Mater 2019;18(4):406. 链接1

[ 8 ] Berger JB, Wadley HNG, McMeeking RM. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. Nature 2017;543(7646):533‒7. 链接1

[ 9 ] Zheng X, Lee H, Weisgraber TH, Shusteff M, Deotte J, Duoss EB, et al. Ultralight, ultrastiff mechanical metamaterials. Science 2014;344(6190):1373‒7. 链接1

[10] Hsieh MT, Endo B, Zhang Y, Bauer J, Valdevit L. The mechanical response of cellular materials with spinodal topologies. J Mech Phys Solids 2019;125:401‒19. 链接1

[11] Bückmann T, Thiel M, Kadic M, Schittny R, Wegener M. An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nat Commun 2014;5(1):4130. 链接1

[12] Kadic M, Bückmann T, Stenger N, Thiel M, Wegener M. On the practicability of pentamode mechanical metamaterials. Appl Phys Lett 2012;100(19):191901. 链接1

[13] Christensen J, Kadic M, Wegener M, Kraft O, Wegener M. Vibrant times for mechanical metamaterials. MRS Commun 2015;5(3):453‒62. 链接1

[14] Lakes RS, Lee T, Bersie A, Wang YC. Extreme damping in composite materials with negative-stiffness inclusions. Nature 2001;410(6828):565‒7. 链接1

[15] Morris C, Bekker L, Spadaccini C, Haberman M, Seepersad C. Tunable mechanical metamaterial with constrained negative stiffness for improved quasi-static and dynamic energy dissipation. Adv Eng Mater 2019;21(7):1900163. 链接1

[16] Nicolaou ZG, Motter AE. Mechanical metamaterials with negative compressibility transitions. Nat Mater 2012;11(7):608‒13. 链接1

[17] Zeng J, Hu H, Zhou L. A study on negative Poisson’s ratio effect of 3D auxetic orthogonal textile composites under compression. Smart Mater Struct 2017;26(6):065014. 链接1

[18] Ren X, Shen J, Tran P, Ngo TD, Xie YM. Auxetic nail: design and experimental study. Compos Struct 2018;184:288‒98. 链接1

[19] Alderson A, Rasburn J, Ameer-Beg S, Mullarkey PG, Perrie W, Evans KE. An auxetic filter: a tuneable filter displaying enhanced size selectivity or defouling properties. Ind Eng Chem Res 2000;39(3):654‒65. 链接1

[20] Lakes RS. Extreme damping in compliant composites with a negativestiffness phase. Philos Mag Lett 2001;81(2):95‒100. 链接1

[21] Wang YC, Lakes RS. Composites with inclusions of negative bulk modulus: extreme damping and negative Poisson’s ratio. J Compos Mater 2005;39(18):1645‒57. 链接1

[22] Bauer J, Meza LR, Schaedler TA, Schwaiger R, Zheng X, Valdevit L. Nanolattices: an emerging class of mechanical metamaterials. Adv Mater 2017;29(40):1701850. 链接1

[23] Ren X, Das R, Tran P, Ngo TD, Xie YM. Auxetic metamaterials and structures: a review. Smart Mater Struct 2018;27(2):023001. 链接1

[24] Luo C, Han CZ, Zhang XY, Zhang XG, Ren X, Xie YM. Design, manufacturing and applications of auxetic tubular structures: a review. Thin-walled Struct 2021;163:107682. 链接1

[25] Kolken HMA, Zadpoor AA. Auxetic mechanical metamaterials. RSC Adv 2017;7(9):5111‒29. 链接1

[26] Askari M, Hutchins DA, Thomas PJ, Astolfi L, Watson RL, Abdi M, et al. Additive manufacturing of metamaterials: a review. Addit Manuf 2020;36:101562. 链接1

[27] Bertoldi K, Vitelli V, Christensen J, van Hecke M. Flexible mechanical metamaterials. Nat Rev Mater 2017;2(11):17066. 链接1

[28] Yu X, Zhou J, Liang H, Jiang Z, Wu L. Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review. Prog Mater Sci 2018;94:114‒73. 链接1

[29] Barchiesi E, Spagnuolo M, Placidi L. Mechanical metamaterials: a state of the art. Math Mech Solids 2019;24(1):212‒34. 链接1

[30] Surjadi JU, Gao L, Du H, Li X, Xiong X, Fang NX, et al. Mechanical metamaterials and their engineering applications. Adv Eng Mater 2019;21(3):1800864. 链接1

[31] Wu W, Hu W, Qian G, Liao H, Xu X, Berto F. Mechanical design and multifunctional applications of chiral mechanical metamaterials: a review. Mater Des 2019;180:107950. 链接1

[32] Gibson LJ, Ashby MF. Cellular solids: structure and properties. Oxford: Pergamon Press; 1988.

[33] Ashby MF, Medalist RFM. The mechanical properties of cellular solids. Metall Trans A 1983;14(9):1755‒69. 链接1

[34] Fleck NA, Deshpande VS, Ashby MF. Micro-architectured materials: past, present and future. Proc R Soc A 2010;466(2121):2495‒516. 链接1

[35] Ashby MF. The properties of foams and lattices. Philos Trans A Math Phys Eng Sci 2006;364(1838):15‒30. 链接1

[36] Ma HS, Roberts AP, Prévost JH, Jullien R, Scherer GW. Mechanical structure‒ property relationship of aerogels. J Non-Cryst Solids 2000;277(2‒3):127‒41.

[37] Woignier T, Phalippou J, Vacher R. Parameters affecting elastic properties of silica aerogels. J Mater Res 1989;4(3):688‒92. 链接1

[38] Schaedler TA, Jacobsen AJ, Torrents A, Sorensen AE, Lian J, Greer JR, et al. Ultralight metallic microlattices. Science 2011;334(6058):962‒5. 链接1

[39] Scherer GW, Smith DM, Qiu X, Anderson JM. Compression of aerogels. J Non- Cryst Solids 1995;186:316‒20. 链接1

[40] Egan PF, Gonella VC, Engensperger M, Ferguson SJ, Shea K. Computationally designed lattices with tuned properties for tissue engineering using 3D printing. PLoS ONE 2017;12(8):0182902. 链接1

[41] Wang Y, Sigmund O. Quasiperiodic mechanical metamaterials with extreme isotropic stiffness. Extreme Mech Lett 2020;34:100596. 链接1

[42] Kader MA, Hazell PJ, Brown AD, Tahtali M, Ahmed S, Escobedo JP, et al. Novel design of closed-cell foam structures for property enhancement. Addit Manuf 2020;31:100976. 链接1

[43] Abueidda DW, Abu Al-Rub RK, Dalaq AS, Lee DW, Khan KA, Jasiuk I. Effective conductivities and elastic moduli of novel foams with triply periodic minimal surfaces. Mech Mater 2016;95:102‒15. 链接1

[44] Deshpande VS, Ashby MF, Fleck NA. Foam topology: bending versus stretching dominated architectures. Acta Mater 2001;49(6):1035‒40. 链接1

[45] Evans AG, Hutchinson JW, Fleck NA, Ashby MF, Wadley HNG. The topological design of multifunctional cellularmetals. ProgMater Sci 2001;46(3‒4):309‒27.

[46] Ashby MF, Evans A, Fleck NA, Gibson L, Hutchinson JW, Wadley HNG, et al. Metal foams: a design guide. Appl Mech Rev 2001;54(6):B105‒6. 链接1

[47] Kudo A, Misseroni D, Wei Y, Bosi F. Compressive response of non-slender octet carbon microlattices. Front Mater 2019;6:169. 链接1

[48] Portela CM, Greer JR, Kochmann DM. Impact of node geometry on the effective stiffness of non-slender three-dimensional truss lattice architectures. Extreme Mech Lett 2018;22:138‒48. 链接1

[49] Deshpande VS, Fleck NA, Ashby MF. Effective properties of the octet-truss lattice material. J Mech Phys Solids 2001;49(8):1747‒69. 链接1

[50] Dong L, Deshpande V, Wadley H. Mechanical response of Ti‍‒‍6Al‍‒‍4V octettruss lattice structures. Int J Solids Struct 2015;60‒61:107‒24.

[51] Favre J, Lohmuller P, Piotrowski B, Kenzari S, Laheurte P, Meraghni F. A continuous crystallographic approach to generate cubic lattices and its effect on relative stiffness of architectured materials. Addit Manuf 2018;21:359‒68. 链接1

[52] Meza LR, Phlipot GP, Portela CM, Maggi A, Montemayor LC, Comella A, et al. Reexamining the mechanical property space of three-dimensional lattice architectures. Acta Mater 2017;140:424‒32. 链接1

[53] Warren WE, Kraynik AM. Linear elastic behavior of a low-density Kelvin foam with open cells. J Appl Mech 1997;64(4):787‒94. 链接1

[54] Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 1963;11(2):127‒40. 链接1

[55] Christensen RM. Mechanics of low density materials. J Mech Phys Solids 1986;34(6):563‒78. 链接1

[56] Ashby MF. Designing hybrid materials. In: Materials selection in mechanical design. Oxford: Butterworth-Heinemann Elsevier Ltd.; 2011. p. 299‒340. 链接1

[57] Fleck NA. An overview of the mechanical properties of foams and periodic lattice materials. In: Singer RF, Körner C, Altstädt V, Münstedt H, editors. Cellular metals and polymers. Bäch: Trans Tech Publications Ltd.; 2005. p. 3‒7. 链接1

[58] Grenestedt JL. Effective elastic behavior of some models for perfect cellular solids. Int J Solids Struct 1999;36(10):1471‒501. 链接1

[59] Hyun S, Torquato S. Optimal and manufacturable two-dimensional, Kagomélike cellular solids. J Mater Res 2002;17(1):137‒44. 链接1

[60] Tancogne-Dejean T, Diamantopoulou M, Gorji MB, Bonatti C, Mohr D. 3D plate-lattices: an emerging class of low-density metamaterial exhibiting optimal isotropic stiffness. Adv Mater 2018;30(45):1803334. 链接1

[61] Hashin Z. On elastic behaviour of fibre reinforced materials of arbitrary transverse phase geometry. J Mech Phys Solids 1965;13(3):119‒34. 链接1

[62] Zhang YH, Qiu XM, Fang DN. Mechanical properties of two novel planar lattice structures. Int J Solids Struct 2008;45(13):3751‒68. 链接1

[63] Romijn NER, Fleck NA. The fracture toughness of planar lattices: imperfection sensitivity. J Mech Phys Solids 2007;55(12):2538‒64. 链接1

[64] Wang AJ, McDowell DL. In-plane stiffness and yield strength of periodic metal honeycombs. J Eng Mater Technol Trans 2004;126(2):137‒56. 链接1

[65] Thomson W. On the division of space with minimum partitional area. Acta Math 1887;24(151):504‒14. 链接1

[66] Christodoulou I, Tan PJ. Crack initiation and fracture toughness of random Voronoi honeycombs. Eng Fract Mech 2013;104:140‒61. 链接1

[67] Silva MJ, Hayes WC, Gibson LJ. The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids. Int J Mech Sci 1995;37(11):1161‒77. 链接1

[68] Silva MJ, Gibson LJ. The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids. Int J Mech Sci 1997;39(5):549‒63. 链接1

[69] Pini V, Ruz JJ, Kosaka PM, Malvar O, Calleja M, Tamayo J. How twodimensional bending can extraordinarily stiffen thin sheets. Sci Rep 2016;6(1):29627. 链接1

[70] Schwaiger R, Meza LR, Li X. The extreme mechanics of micro- and nanoarchitected materials. MRS Bull 2019;44(10):758‒65. 链接1

[71] O’Masta MR, Dong L, St-Pierre L, Wadley HNG, Deshpande VS. The fracture toughness of octet-truss lattices. J Mech Phys Solids 2017;98:271‒89. 链接1

[72] Hsieh MT, Deshpande VS, Valdevit L. A versatile numerical approach for calculating the fracture toughness and R-curves of cellular materials. J Mech Phys Solids 2020;138:103925. 链接1

[73] Abueidda DW, Bakir M, Abu Al-Rub RK, Bergström JS, Sobh NA, Jasiuk I. Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures. Mater Des 2017;122:255‒67. 链接1

[74] Gandy PJF, Bardhan S, Mackay AL, Klinowski J. Nodal surface approximations to the P, G, D and I-WP triply periodic minimal surfaces. Chem Phys Lett 2001;336(3‒4):187‒95.

[75] Hsieh MT, Valdevit L. Minisurf—a minimal surface generator for finite element modeling and additive manufacturing. Softw Impacts 2020;6:100026. 链接1

[76] Hsieh MT, Valdevit L. Update (2.0) to MiniSurf—a minimal surface generator for finite element modeling and additive manufacturing. Softw Impacts 2020;6:100035. 链接1

[77] Zhang L, Feih S, Daynes S, Chang S, Wang MY, Wei J, et al. Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading. Addit Manuf 2018;23:505‒15. 链接1

[78] Lee MG, Lee JW, Han SC, Kang K. Mechanical analyses of “Shellular”, an ultralow-density material. Acta Mater 2016;103:595‒607. 链接1

[79] Abueidda DW, Jasiuk I, Sobh NA. Acoustic band gaps and elastic stiffness of PMMA cellular solids based on triply periodic minimal surfaces. Mater Des 2018;145:20‒7. 链接1

[80] Lee DW, Khan KA, Abu Al-Rub RK. Stiffness and yield strength of architectured foams based on the Schwarz primitive triply periodic minimal surface. Int J Plast 2017;95:1‒20. 链接1

[81] Al-Ketan O, Rezgui R, Rowshan R, Du H, Fang NX, Abu Al-Rub RK. Microarchitected stretching-dominated mechanical metamaterials with minimal surface topologies. Adv Eng Mater 2018;20(9):1800029. 链接1

[82] Al-Ketan O, Rowshan R, Abu Al-Rub RK. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Addit Manuf 2018;19:167‒83. 链接1

[83] Al-Ketan O, Abu Al-Rub RK, Rowshan R. The effect of architecture on the mechanical properties of cellular structures based on the IWP minimal surface. J Mater Res 2018;33(3):343‒59. 链接1

[84] Cahn JW. On spinodal decomposition in cubic crystals. Acta Metall 1962;10(3):179‒83. 链接1

[85] Cahn JW. On spinodal decomposition. Acta Metall 1961;9(9):795‒801. 链接1

[86] Portela CM, Vidyasagar A, Krödel S, Weissenbach T, Yee DW, Greer JR, et al. Extreme mechanical resilience of self-assembled nanolabyrinthine materials. Proc Natl Acad Sci USA 2020;117(11):5686‒93. 链接1

[87] Zhang Y, Hsieh MT, Valdevit L. Mechanical performance of 3D printed interpenetrating phase composites with spinodal topologies. Compos Struct 2021;263:113693. 链接1

[88] Lee MN, Mohraz A. Bicontinuous macroporous materials from bijel templates. Adv Mater 2010;22(43):4836‒41. 链接1

[89] Biener J, Hodge AM, Hayes JR, Volkert CA, Zepeda-Ruiz LA, Hamza AV, et al. Size effects on the mechanical behavior of nanoporous Au. Nano Lett 2006;6(10):2379‒82. 链接1

[90] Garcia AE, Wang CS, Sanderson RN, McDevitt KM, Zhang Y, Valdevit L, et al. Scalable synthesis of gyroid-inspired freestanding three-dimensional graphene architectures. Nanoscale Adv 2019;1(10):3870‒82. 链接1

[91] Suquet PM. Overall potentials and extremal surfaces of power law or ideally plastic composites. J Mech Phys Solids 1993;41(6):981‒1002. 链接1

[92] Castañeda PP, Debotton G. On the homogenized yield strength of two-phase composites. Proc R Soc A 1903;1992(438):419‒31.

[93] Bauer J, Schroer A, Schwaiger R, Kraft O. Approaching theoretical strength in glassy carbon nanolattices. Nat Mater 2016;15(4):438‒43. 链接1

[94] Meza LR, Das S, Greer JR. Strong, lightweight, and recoverable threedimensional. Science 2014;345(6202):1322‒36. 链接1

[95] Lian J, Jang D, Valdevit L, Schaedler TA, Jacobsen AJ, Carter WB, et al. Catastrophic vs gradual collapse of thin-walled nanocrystalline Ni hollow cylinders as building blocks of microlattice structures. Nano Lett 2011;11(10):4118‒25. 链接1

[96] Valdevit L, Godfrey SW, Schaedler TA, Jacobsen AJ, Carter WB. Compressive strength of hollow microlattices: experimental characterization, modeling, and optimal design. J Mater Res 2013;28(17):2461‒73. 链接1

[97] Mazur M, Leary M, Sun S, Vcelka M, Shidid D, Brandt M. Deformation and failure behaviour of Ti‒6Al‒4V lattice structures manufactured by selective laser melting (SLM). Int J Adv Manuf Technol 2016;84:1391‒411. 链接1

[98] Yan C, Hao L, Hussein A, Raymont D. Evaluations of cellular lattice structures manufactured using selective laser melting. Int J Mach Tools Manuf 2012;62:32‒8. 链接1

[99] Rajagopalan S, Robb RA. Schwarz meets Schwann: design and fabrication of biomorphic and durataxic tissue engineering scaffolds. Med Image Anal 2006;10(5):693‒712. 链接1

[100] Evans KE, Nkansah MA, Hutchinson IJ, Rogers SC. Molecular network design. Nature 1991;353(6340):124. 链接1

[101] Burns S. Negative Poisson’s ratio materials. Science 1987;238(4826):551. 链接1

[102] Soman P, Fozdar DY, Lee JW, Phadke A, Varghese S, Chen S. A threedimensional polymer scaffolding material exhibiting a zero Poisson’s ratio. Soft Matter 2012;8(18):4946‒51. 链接1

[103] Silberschmidt VV, Matveenko VP, editors. Mechanics of advanced materials. Cham: Springer; 2015. 链接1

[104] Gibson IJ, Ashby MF. The mechanics cellular materials of three-dimensional cellular materials. Proc R Soc A 1982;382(1782):43‒59. 链接1

[105] Evans KE, Nkansah MA, Hutchinson IJ. Auxetic foams: modelling negative Poisson’s ratios. Acta Metall Mater 1994;42(4):1289‒94. 链接1

[106] Evans KE, Alderson A. Auxetic materials: functional materials and structures from lateral thinking! Adv Mater 2000;12(9):617‒28. 链接1

[107] Yang DU, Lee S, Huang FY. Geometric effects on micropolar elastic honeycomb structure with negative Poisson’s ratio using the finite element method. Finite Elem Anal Des 2003;39(3):187‒205. 链接1

[108] Wan H, Ohtaki H, Kotosaka S, Hu G. A study of negative Poisson’s ratios in auxetic honeycombs based on a large deflection model. Eur J Mech A Solids 2004;23(1):95‒106. 链接1

[109] Larsen UD, Signund O, Bouwsta S. Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. J Microelectromech Syst 1997;6(2):99‒106. 链接1

[110] Grima JN, Gatt R, Alderson A, Evans KE. On the potential of connected stars as auxetic systems. Mol Simul 2005;31(13):925‒35. 链接1

[111] Smith CW, Grima JN, Evans KE. Novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model. Acta Mater 2000;48(17):4349‒56. 链接1

[112] Gaspar N, Ren XJ, Smith CW, Grima JN, Evans KE. Novel honeycombs with auxetic behaviour. Acta Mater 2005;53(8):2439‒45. 链接1

[113] Babaee S, Shim J, Weaver JC, Chen ER, Patel N, Bertoldi K. 3D soft metamaterials with negative Poisson’s ratio. Adv Mater 2013;25(36):5044‒9. 链接1

[114] Bertoldi K, Reis PM, Willshaw S, Mullin T. Negative Poisson’s ratio behavior induced by an elastic instability. Adv Mater 2010;22(3):361‒6. 链接1

[115] Wang XT, Wang B, Li XW, Ma L. Mechanical properties of 3D re-entrant auxetic cellular structures. Int J Mech Sci 2017;131‒132:396‒407.

[116] Ren X, Shen J, Ghaedizadeh A, Tian H, Xie YM. Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties. Smart Mater Struct 2015;24(9):095016. 链接1

[117] Zhang XY, Ren X. A simple methodology to generate metamaterials and structures with negative Poisson’s ratio. Phys Status Solidi B 2020;257(10):2000439. 链接1

[118] Prall DM, Lakes RS. Properties of chiral honeycombe with Poisson’s ratio of _1. Int J Mech Sci 1997;39(13):305‒14. 链接1

[119] Wojciechowski KW, Brańka AC. Negative Poisson ratio in a two-dimensional “isotropic” solid. Phys Rev A Gen Phys 1989;40(12):7222‒5. 链接1

[120] Lakes R. Deformation mechanisms in negative Poisson’s ratio materials: structural aspects. J Mater Sci 1991;26(9):2287‒92. 链接1

[121] Grima JN, Gatt R, Farrugia PS. On the properties of auxetic meta-tetrachiral structures. Phys Status Solidi B 2008;245(3):511‒20. 链接1

[122] Alderson A, Alderson KL, Attard D, Evans KE, Gatt R, Grima JN, et al. Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Compos Sci Technol 2010;70(7):1042‒8. 链接1

[123] Mousanezhad D, Haghpanah B, Ghosh R, Hamouda AM, Nayeb-Hashemi H, Vaziri A. Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: a simple energy-based approach. Theor Appl Mech Lett 2016;6(2):81‒96. 链接1

[124] Grima JN, Evans KE. Auxetic behavior from rotating squares. J Mater Sci Lett 2000;19(17):1563‒5. 链接1

[125] Grima JN, Evans KE. Auxetic behavior from rotating triangles. J Mater Sci 2006;41(10):3193‒6. 链接1

[126] Grima JN, Alderson A, Evans KE. Negative Poisson’s ratios from rotating rectangles. Comput Methods Sci Technol 2004;10(2):137‒45. 链接1

[127] Grima JN, Gatt R, Alderson A, Evans KE. On the auxetic properties of “rotating rectangles” with different connectivity. J Phys Soc Jpn 2005;74:2866‒7. 链接1

[128] Attard D, Grima JN. Auxetic behaviour from rotating rhombi. Phys Status Solidi B 2008;245(11):2395‒404. 链接1

[129] Attard D, Manicaro E, Grima JN. On rotating rigid parallelograms and their potential for exhibiting auxetic behaviour. Phys Status Solidi B 2009;246(9):2033‒44. 链接1

[130] Grima JN, Farrugia PS, Gatt R, Attard D. On the auxetic properties of rotating rhombi and parallelograms: a preliminary investigation. Phys Status Solidi B 2008;245(3):521‒9. 链接1

[131] Grima JN, Manicaro E, Attard D. Auxetic behaviour from connected differentsized squares and rectangles. Proc R Soc A 2011;467(2126):439‒58. 链接1

[132] Gatt R, Mizzi L, Azzopardi JI, Azzopardi KM, Attard D, Casha A, et al. Hierarchical auxetic mechanical metamaterials. Sci Rep 2015;5(1):8395. 链接1

[133] Ren X, Shen J, Tran P, Ngo TD, Xie YM. Design and characterisation of a tuneable 3D buckling-induced auxetic metamaterial. Mater Des 2018;‍139:336‒42. 链接1

[134] Grima JN, Gatt R. Perforated sheets exhibiting negative Poisson’s ratios. Adv Eng Mater 2010;12(6):460‒4. 链接1

[135] Grima JN, Gatt R, Ellul B, Chetcuti E. Auxetic behaviour in non-crystalline materials having star or triangular shaped perforations. J Non-Cryst Solids 2010;356(37‒40):1980‒7.

[136] Mizzi L, Attard D, Evans KE, Gatt R, Grima JN. Auxetic mechanical metamaterials with diamond and elliptically shaped perforations. Acta Mech 2021;232(2):779‒91. 链接1

[137] Mizzi L, Azzopardi KM, Attard D, Grima JN, Gatt R. Auxetic metamaterials exhibiting giant negative Poisson’s ratios. Phys Status Solidi Rapid Res Lett 2015;9(7):425‒30. 链接1

[138] Grima JN, Mizzi L, Azzopardi KM, Gatt R. Auxetic perforated mechanical metamaterials with randomly oriented cuts. Adv Mater 2016;28(2):385‒9. 链接1

[139] Mizzi L, Grima JN, Gatt R, Attard D. Analysis of the deformation behavior and mechanical properties of slit-perforated auxetic metamaterials. Phys Status Solidi B 2019;256(1):1800153.

[140] Wang H, Xiao SH, Zhang C. Novel planar auxetic metamaterial perforated with orthogonally aligned oval-shaped holes and machine learning solutions. Adv Eng Mater 2021;23(7):2100102. 链接1

[141] Caddock BD, Evans KE. Microporous materials with negative Poisson’s ratios. I. Microstructure and mechanical properties. J Phys D Appl Phys 1989;22(12):1877‒82. 链接1

[142] Evans KE, Caddock BD. Microporous materials with negative Poisson’s ratios. II. Mechanisms and interpretation. J Phys D Appl Phys 1989;22(12):1883‒7. 链接1

[143] Evans KE. Tensile network microstructures exhibiting negative Poisson’s ratios. J Phys D Appl Phys 1989;22(12):1870‒6. 链接1

[144] Alderson K, Alderson A, Ravirala N, Simkins V, Davies P. Manufacture and characterisation of thin flat and curved auxetic foam sheets. Phys Status Solidi B 2012;249(7):1315‒21. 链接1

[145] Bouaziz O, Masse JP, Allain S, Orgéas L, Latil P. Compression of crumpled aluminum thin foils and comparison with other cellular materials. Mater Sci Eng A 2013;570:1‒7. 链接1

[146] Wood AJ. Witten’s lectures on crumpling. Phys A Stat Mech Its Appl 2002;313(1‒2):83‒109.

[147] Ben Amar M, Pomeau Y. Crumpled paper. Proc R Soc A 1997;453(1959):729‒55. 链接1

[148] Miura K. Method of packaging and deployment of large membranes in space. Sagamihara: Institute of Space and Astronautical Science; 1985.

[149] Schenk M, Guest SD. Origami folding: a structural engineering approach. In: Proceedings of the 5th International Conference on Origami in Science, Mathematics and Education; 2010 Jul 13‒17; Singapore; 2010. p. 291‒303. 链接1

[150] Schenk M, Guest SD. Geometry of Miura-folded metamaterials. Proc Natl Acad Sci USA 2013;110(9):3276‒81. 链接1

[151] Zhang Z, Tian R, Zhang X, Wei F, Yang X. A novel butterfly-shaped auxetic structure with negative Poisson’s ratio and enhanced stiffness. J Mater Sci 2021;56(25):14139‒56. 链接1

[152] Choi JB, Lakes RS. Non-linear properties of metallic cellular materials with a negative Poisson’s ratio. J Mater Sci 1992;27(19):5375‒81. 链接1

[153] Overvelde JTB, Shan S, Bertoldi K. Compaction through buckling in 2D periodic, soft and porous structures: effect of pore shape. Adv Mater 2012;24(17):2337‒42. 链接1

[154] Chen Z, Wu X, Xie YM, Wang Z, Zhou S. Re-entrant auxetic lattices with enhanced stiffness: a numerical study. Int J Mech Sci 2020;178:105619. 链接1

[155] Yang L, Harrysson O, West H, Cormier D. Compressive properties of Ti‒6Al‒ 4V auxetic mesh structures made by electron beam melting. Acta Mater 2012;60(8):3370‒9. 链接1

[156] Shokri Rad M, Ahmad Z, Alias A. Computational approach in formulating mechanical characteristics of 3D star honeycomb auxetic structure. Adv Mater Sci Eng 2015;2015:650769. 链接1

[157] Chen Y, Fu MH. A novel three-dimensional auxetic lattice meta-material with enhanced stiffness. Smart Mater Struct 2017;26(10):105029. 链接1

[158] Spadoni A, Ruzzene M. Elasto-static micropolar behavior of a chiral auxetic lattice. J Mech Phys Solids 2012;60(1):156‒71. 链接1

[159] Ha CS, Plesha ME, Lakes RS. Chiral three-dimensional lattices with tunable Poisson’s ratio. Smart Mater Struct 2016;25(5):054005. 链接1

[160] Slann A, White W, Scarpa F, Boba K, Farrow I. Cellular plates with auxetic rectangular perforations. Phys Status Solidi B 2015;252(7):1533‒9. 链接1

[161] Carta G, Brun M, Baldi A. Porous materials with omnidirectional negative Poisson’s ratio. 2015. arXiv:1505.07983. 链接1

[162] Zheng X, Guo X, Watanabe I. A mathematically defined 3D auxetic metamaterial with tunable mechanical and conduction properties. Mater Des 2021;198:109313. 链接1

[163] Wang L, Zhu S, Wang B, Tan X, Zou Y, Chen S, et al. Latitude-and-longitudeinspired three-dimensional auxetic metamaterials. Extreme Mech Lett 2021;42:101142. 链接1

[164] Lu ZX, Li X, Yang ZY, Xie F. Novel structure with negative Poisson’s ratio and enhanced Young’s modulus. Compos Struct 2016;138:243‒52. 链接1

[165] Fu MH, Chen Y, Hu LL. A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength. Compos Struct 2017;160:574‒85. 链接1

[166] Jacobsen AJ, Barvosa-Carter W, Nutt S. Micro-scale truss structures formed from self-propagating photopolymer waveguides. Adv Mater 2007;19(22):3892‒6. 链接1

[167] Jacobsen AJ, Barvosa-Carter W, Nutt S. Compression behavior of micro-scale truss structures formed from self-propagating polymer waveguides. Acta Mater 2007;55(20):6724‒33. 链接1

[168] Erdeniz D, Schaedler TA, Dunand DC. Deposition-based synthesis of nickelbased superalloy microlattices. Scr Mater 2017;138:28‒31. 链接1

[169] Hundley JM, Clough EC, Jacobsen AJ. The low velocity impact response of sandwich panels with lattice core reinforcement. Int J Impact Eng 2015;84:64‒77. 链接1

[170] Yin S, Jacobsen AJ, Wu L, Nutt SR. Inertial stabilization of flexible polymer micro-lattice materials. J Mater Sci 2013;48(19):6558‒66. 链接1

[171] Torrents A, Schaedler TA, Jacobsen AJ, Carter WB, Valdevit L. Characterization of nickel-based microlattice materials with structural hierarchy from the nanometer to the millimeter scale. Acta Mater 2012;60(8):3511‒23. 链接1

[172] Jacobsen AJ, Mahoney S, Carter WB, Nutt S. Vitreous carbon micro-lattice structures. Carbon 2011;49(3):1025‒32. 链接1

[173] Fink KD, Kolodziejska JA, Jacobsen AJ, Roper CS. Fluid dynamics of flow through microscale lattice structures formed from self-propagating photopolymer waveguides. AIChE J 2011;57(10):2636‒46. 链接1

[174] Jacobsen AJ, Barvosa-Carter W, Nutt S. Micro-scale truss structures with three-fold and six-fold symmetry formed from self-propagating polymer waveguides. Acta Mater 2008;56(11):2540‒8. 链接1

[175] Jacobsen AJ, Kolodziejska J, Doty R, Fink K, Zhou C, Roper C, et al. Interconnected self-propagating photopolymer waveguides: an alternative to stereolithography for rapid formation of lattice-based open-cellular materials. In: Proceedings of the 21st Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference; 2010 Aug 9‒11; Austin, TX, USA; 2010. p. 846‒53. 链接1

[176] Han SC, Lee JW, Kang K. A new type of low density material: shellular. Adv Mater 2015;27(37):5506‒11. 链接1

[177] Choi JW, Wicker RB, Cho SH, Ha CS, Lee SH. Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography. Rapid Prototyp J 2009;15(1):59‒70. 链接1

[178] Choi JW, MacDonald E, Wicker R. Multi-material microstereolithography. Int J Adv Manuf Technol 2010;49(5‒8):543‒51.

[179] Choi JW, Wicker R, Lee SH, Choi KH, Ha CS, Chung I. Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. J Mater Process Technol 2009;209(15‒16):5494‒503. 链接1

[180] Li M, Liu W. A novel parameterized digital-mask generation method for projection stereolithography in tissue engineering. Rapid Prototyp J 2018;24(6):935‒44. 链接1

[181] Deshmukh S, Gandhi PS. Optomechanical scanning systems for microstereolithography (MSL): analysis and experimental verification. J Mater Process Technol 2009;209(3):1275‒85. 链接1

[182] Gibson I, Rosen DW, Stucker B. Additive manufacturing technologies. 2nd ed. Cham: Springer; 2015. 链接1

[183] Zhang X, Jiang XN, Sun C. Micro-stereolithography of polymeric and ceramic microstructures. Sens Actuators A Phys 1999;77(2):149‒56. 链接1

[184] Ikuta K, Hirowatari K. Real three dimensional micro fabrication using stereo lithography and metal molding. In: Fort Lauderdale FL, editor. Proceedings IEEE Micro Electro Mechanical Systems; 1993 Feb 10; Fort Lauderdale, FL, USA. Piscataway: IEEE; 1993. p. 42‒7. 链接1

[185] You S, Miller K, Chen S. Microstereolithography. In: Cho DW, editor. Biofabrication and 3D tissue modeling. London: Royal Society of Chemistry; 2019. p. 1‒21. 链接1

[186] Bertsch A, Zissi S, Jézéquel JY, Corbel S, André JC. Microstereophotolithography using a liquid crystal display as dynamic mask-generator. Microsyst Technol 1997;3(2):42‒7. 链接1

[187] Farsari M, Claret-Tournier F, Huang S, Chatwin CR, Budgett DM, Birch PM, et al. A novel high-accuracy microstereolithography method employing an adaptive electro-optic mask. J Mater Process Technol 2000;107(1‒3): 167‒72.

[188] Ha YM, Choi JW, Lee SH. Mass production of 3-D microstructures using projection microstereolithography. J Mech Sci Technol 2008;22(3):514. 链接1

[189] Mao Y, Miyazaki T, Sakai K, Gong J, Zhu M, Ito H. A 3D printable thermal energy storage crystalline gel using mask-projection stereolithography. Polymers 2018;10(10):1117. 链接1

[190] Liu W, Wu H, Tian Z, Li Y, Zhao Z, Huang M, et al. 3D printing of dense structural ceramic microcomponents with low cost: tailoring the sintering kinetics and the microstructure evolution. J Am Ceram Soc 2019;102(5):2257‒62. 链接1

[191] Bertsch A, Jézéquel JY, André JC. Study of the spatial resolution of a new 3D microfabrication process: the microstereophotolithography using a dynamic mask-generator technique. J Photochem Photobiol A Chem 1997;107(1‍‒‍3): 275‒81.

[192] Lambert PM, Campaigne III EA, Williams CB. Design considerations for mask projection microstereolithography systems. In: Proceedings of the 24th International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference; 2013 Aug 12‍‒‍14; Austin, TX, USA; 2013. p. 111‒30. 链接1

[193] Farkas B, Romano I, Ceseracciu L, Diaspro A, Brandi F, Beke S. Four-order stiffness variation of laser-fabricated photopolymer biodegradable scaffolds by laser parameter modulation. Mater Sci Eng C Mater Biol Appl 2015;55:14‒21. 链接1

[194] De Hazan Y, Heinecke J, Weber A, Graule T. High solids loading ceramic colloidal dispersions in UV curable media via comb-polyelectrolyte surfactants. J Colloid Interface Sci 2009;337(1):66‒74. 链接1

[195] Lee JW, Lee IH, Cho DW. Development of micro-stereolithography technology using metal powder. Microelectron Eng 2006;83(4‒9):1253‒6.

[196] Morris C, Bekker L, Haberman MR, Seepersad CC. Design exploration of reliably manufacturable materials and structures with applications to negative stiffness metamaterials and microstereolithography. J Mech Des 2018;140(11):111415. 链接1

[197] Lee MP, Cooper GJT, Hinkley T, Gibson GM, Padgett MJ, Cronin L. Development of a 3D printer using scanning projection stereolithography. Sci Rep 2015;5(1):9875. 链接1

[198] Cullen AT, Price AD. Digital light processing for the fabrication of 3D intrinsically conductive polymer structures. Synth Met 2018;235:34‒41. 链接1

[199] Ibrahim R, Raman I, Ramlee MHH, Mohamed MAS, Ibrahim M, Saidin W. Evaluation on the photoabsorber composition effect in projection microstereolithography. Appl Mech Mater 2012;159:109‒14. 链接1

[200] Raman R, Bhaduri B, Mir M, Shkumatov A, Lee MK, Popescu G, et al. Highresolution projection microstereolithography for patterning of neovasculature. Adv Healthc Mater 2016;5(5):610‒9. 链接1

[201] Cui J, Wang J, Weibel JA, Pan L. A compliant microstructured thermal interface material for dry and pluggable interfaces. Int J Heat Mass Transf 2019;131:1075‒82. 链接1

[202] Park IB, Ha YM, Lee SH. Cross-section segmentation for improving the shape accuracy of microstructure array in projection microstereolithography. Int J Adv Manuf Technol 2010;46(1‒4):151‒61.

[203] Zheng X, Smith W, Jackson J, Moran B, Cui H, Chen D, et al. Multiscale metallic metamaterials. Nat Mater 2016;15(10):1100‍‒‍6. Corrected in: Nat Mater 2017;16(4):497. 链接1

[204] Han D, Yang C, Fang NX, Lee H. Rapid multi-material 3D printing with projection micro-stereolithography using dynamic fluidic control. Addit Manuf 2019;27:606‒15. 链接1

[205] Khatri B, Frey M, Raouf-Fahmy A, Scharla MV, Hanemann T. Development of a multi-material stereolithography 3D printing device. Micromachines 2020;11(5):532. 链接1

[206] Wang Q, Jackson JA, Ge Q, Hopkins JB, Spadaccini CM, Fang NX. Lightweight mechanical metamaterials with tunable negative thermal expansion. Phys Rev Lett 2016;117(17):175901. 链接1

[207] Maruo S, Fourkas JT. Recent progress in multiphoton microfabrication. Laser Photonics Rev 2008;2(1‒2):100‒11.

[208] von Freymann G, Ledermann A, Thiel M, Staude I, Essig S, Busch K, et al. Three-dimensional nanostructures for photonics. Adv Funct Mater 2010;20(7):1038‒52. 链接1

[209] Do MT, Nguyen TTN, Li Q, Benisty H, Ledoux-Rak I, Lai ND. Submicrometer 3D structures fabrication enabled by one-photon absorption direct laser writing. Opt Express 2013;21(18):20964‒73. 链接1

[210] Qin XH, Torgersen J, Saf R, Mühleder S, Pucher N, Ligon SC, et al. Threedimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization. J Polym Sci A Polym Chem 2013;51(22):4799‒810. 链接1

[211] Kunwar P, Soman P. Direct laser writing of fluorescent silver nanoclusters: a review of methods and applications. ACS Appl Nano Mater 2020;3(8):7325‒42. 链接1

[212] Phillips D, Simpson S, Hanna S. Optomechanical microtools and shapeinduced forces. In: Glückstad J, Palima D, editors. Light robotics: structuremediated nanobiophotonics. Amsterdam: Elsevier; 2017. p. 65‒98. 链接1

[213] Fischer J, Wegener M. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy. Opt Mater Express 2011;1(4):614‒24. 链接1

[214] Charipar NA, Charipar KM, Kim H, Kirleis MA, Auyeung RCY, Smith AT. Laser processing of 2D and 3D metamaterial structures. In: Xu X, Hennig G, Nakata Y, Roth SW, editors. Proceedings Volume 8607, laser applications in microelectronic and optoelectronic manufacturing; 2013 Feb 2‍‒‍7; San Francisco, CA, USA; 2013. p. 86070T.

[215] Rill MS, Plet C, Thiel M, Staude I, von Freymann G, Linden S, et al. Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat Mater 2008;7(7):543‒6. 链接1

[216] Fanyaeu I, Mizeikis V. Realisation of 3D metamaterial perfect absorber structures by direct laser writing. In: von Freymann G, Schoenfeld WV, Rumpf RC, editors. Proceedings Volume 10115, advanced fabrication technologies for micro/nano optics and photonics X; 2017 Jan 28‒Feb 2; San Francisco, CA, USA; 2017. p. 101150X.

[217] Debnath S, Zhang X, Guney DO, Soukoulis CM. Two-dimensionally isotropic optical metamaterial feasible for stimulated emission depletion microscopy inspired direct laser writing. In: Proceedings of the 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics; 2013 Sep 16‒21; Talence, France. Piscataway: IEEE; 2013. p. 427‒9. 链接1

[218] Deubel M, von Freymann G, Wegener M, Pereira S, Busch K, Soukoulis CM. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat Mater 2004;3(7):444‒7. 链接1

[219] Rill MS, Kriegler CE, Thiel M, von Freymann G, Linden S, Wegener M. Negative-index bianisotropic photonic metamaterial fabricated by direct laser writing and silver shadow evaporation. Opt Lett 2009;34(1):19‒21. 链接1

[220] Kumar R, Joanni E, Savu R, Pereira MS, Singh RK, Constantino CJL, et al. Fabrication and electrochemical evaluation of micro-supercapacitors prepared by direct laser writing on free-standing graphite oxide paper. Energy 2019;179:676‒84. 链接1

[221] Hengsbach S, Lantada AD. Direct laser writing of auxetic structures: present capabilities and challenges. Smart Mater Struct 2014;23(8):085033. 链接1

[222] Berwind MF, Kamas A, Eberl C. A hierarchical programmable mechanical metamaterial unit cell showing metastable shape memory. Adv Eng Mater 2018;20(11):1800771. 链接1

[223] Bückmann T, Stenger N, Kadic M, Kaschke J, Frölich A, Kennerknecht T, et al. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv Mater 2012;24(20):2710‒4. 链接1

[224] Jin D, Chen Q, Huang TY, Huang J, Zhang L, Duan H. Four-dimensional direct laser writing of reconfigurable compound micromachines. Mater Today 2020;32:19‒25. 链接1

[225] Klein F, Striebel T, Fischer J, Jiang Z, Franz CM, von Freymann G, et al. Elastic fully three-dimensional microstructure scaffolds for cell force measurements. Adv Mater 2010;22(8):868‒71. 链接1

[226] Mao M, He J, Li X, Zhang B, Lei Q, Liu Y, et al. The emerging frontiers and applications of high-resolution 3D printing. Micromachines 2017;8(4):113. 链接1

[227] Whitesides GM, Grzybowski B. Self-assembly at all scales. Science 2002;295(5564):2418‒21. 链接1

[228] Li L, Sun R, Zheng R. Tunable morphology and functionality of multicomponent self-assembly: a review. Mater Des 2021;197:109209. 链接1

[229] Cummins C, Lundy R, Walsh JJ, Ponsinet V, Fleury G, Morris MA. Enabling future nanomanufacturing through block copolymer self-assembly: a review. Nano Today 2020;35:100936. 链接1

[230] Feng H, Lu X, Wang W, Kang NG, Mays JW. Block copolymers: synthesis, selfassembly, and applications. Polymers 2017;9(10):494. 链接1

[231] Riess G. Micellization of block copolymers. Prog Polym Sci 2003;28(7):1107‒70. 链接1

[232] Lee PC, Wang CC, Chen CY. Synthesizing isoprene and methyl methacrylate triblock copolymers using peculiar living free radical polymerization with difunctional t-BuLi initiator. Polymer 2020;210:123028. 链接1

[233] Hadjichristidis N, Iatrou H, Pitsikalis M, Mays J. Macromolecular architectures by living and controlled/living polymerizations. Prog Polym Sci 2006;31(12):1068‒132. 链接1

[234] Zhang H, Hong K, Mays JW. Synthesis of block copolymers of styrene and methyl methacrylate by conventional free radical polymerization in room temperature ionic liquids. Macromolecules 2002;35(15):5738‒41. 链接1

[235] Ross CA, Berggren KK, Cheng JY, Jung YS, Chang JB. Three-dimensional nanofabrication by block copolymer self-assembly. Adv Mater 2014;26(25):4386‒96. 链接1

[236] Bates FS. Polymer‒polymer phase behavior. Science 1991;251(4996):898‒905. 链接1

[237] Matsen MW, Schick M. Stable and unstable phases of a diblock copolymer melt. Phys Rev Lett 1994;72(16):2660‒3. 链接1

[238] Mai Y, Eisenberg A. Self-assembly of block copolymers. Chem Soc Rev 2012;41(18):5969‒85. 链接1

[239] Lynd NA, Meuler AJ, Hillmyer MA. Polydispersity and block copolymer selfassembly. Prog Polym Sci 2008;33(9):875‒93. 链接1

[240] Robbins SW, Beaucage PA, Sai H, Tan KW, Werner JG, Sethna JP, et al. Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors. Sci Adv 2016;2(1):1501119. 链接1

[241] Khaderi SN, Scherer MRJ, Hall CE, Steiner U, Ramamurty U, Fleck NA, et al. The indentation response of Nickel nano double gyroid lattices. Extreme Mech Lett 2017;10:15‒23. 链接1

[242] Erlebacher J, Aziz MJ, Karma A, Dimitrov N, Sieradzki K. Evolution of nanoporosity in dealloying. Nature 2001;410(6827):450‒3. 链接1

[243] Gan YX, Zhang Y, Gan JB. Nanoporous metals processed by dealloying and their applications. AIMS Mater Sci 2018;5(6):1141‒83. 链接1

[244] Tsujioka N, Ishizuka N, Tanaka N, Kubo T, Hosoya K. Well-controlled 3D skeletal epoxy-based monoliths obtained by polymerization induced phase separation. J Polym Sci A Polym Chem 2008;46(10):3272‒81. 链接1

[245] Zhou N, Bates FS, Lodge TP. Mesoporous membrane templated by a polymeric bicontinuous microemulsion. Nano Lett 2006;6(10):2354‒7. 链接1

[246] Hodge AM, Biener J, Hayes JR, Bythrow PM, Volkert CA, Hamza AV. Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater 2007;55(4):1343‒9. 链接1

[247] Fujita T, Guan P, McKenna K, Lang X, Hirata A, Zhang L, et al. Atomic origins of the high catalytic activity of nanoporous gold. Nat Mater 2012;11(9):775‒80. 链接1

[248] El Mel AA, Boukli-Hacene F, Molina-Luna L, Bouts N, Chauvin A, Thiry D, et al. Unusual dealloying effect in gold/copper alloy thin films: the role of defects and column boundaries in the formation of nanoporous gold. ACS Appl Mater Interfaces 2015;7(4):2310‒21. 链接1

[249] Huang H. Spinodal decomposition underlies evolution of nanoporosity in dealloying. MRS Bull 2001;26(6):431‒2. 链接1

[250] Lee MN, Mohraz A. Hierarchically porous silver monoliths from colloidal bicontinuous interfacially jammed emulsion gels. J Am Chem Soc 2011;133(18):6945‒7. 链接1

[251] Mohraz A, Thorson TJ. Post-processing Bijels for applications. In: Clegg PS, editor. Bijels: bicontinuous particle-stabilized emulsions. London: The Royal Society of Chemistry; 2020. p. 34‒60. 链接1

[252] Wu Q, Vaziri A, Asl ME, Ghosh R, Gao Y, Wei X, et al. Lattice materials with pyramidal hierarchy: systematic analysis and three dimensional failure mechanism maps. J Mech Phys Solids 2019;125:112‒44. 链接1

[253] Meza LR, Zelhofer AJ, Clarke N, Mateos AJ, Kochmann DM, Greer JR. Resilient 3D hierarchical architected metamaterials. Proc Natl Acad Sci USA 2015;112(37):11502‒7. 链接1

[254] Huang X, Yang J, Bai L, Wang X, Ren X. Theoretical solutions for auxetic laminated beam subjected to a sudden load. Structures 2020;28:57‒68. 链接1

[255] Hawreliak JA, Lind J, Maddox B, Barham M, Messner M, Barton N, et al. Dynamic behavior of engineered lattice materials. Sci Rep 2016;6(1):28094. 链接1

[256] Momeni F, Hassani.N SMM, Liu X, Ni J. A review of 4D printing. Mater Des 2017;122:42‒79. 链接1

[257] Boley JW, van Rees WM, Lissandrello C, Horenstein MN, Truby RL, Kotikian A, et al. Shape-shifting structured lattices via multimaterial 4D printing. Proc Natl Acad Sci USA 2019;116(42):20856‒62. 链接1

[258] Bessa MA, Glowacki P, Houlder M. Bayesian machine learning in metamaterial design: fragile becomes supercompressible. Adv Mater 2019;31(48):1904845. 链接1

[259] Le QV, Ranzato MA, Monga R, Devin M, Chen K, Corrado GS, et al. Building high-level features using large scale unsupervised learning. In: Proceedings of the 29th International Conference on Machine Learning; 2012 Jun 26‒Jul 1; Edinburgh, Scotland; 2012. p. 81‒8. 链接1

[260] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal 2017;42:60‒88. 链接1

[261] Deng L, Li J, Huang JT, Yao K, Yu D, Seide F, et al. Recent advances in deep learning for speech recognition at Microsoft. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing; 2013 May 26‒31; Vancouver, BC, Canada; 2013. p. 8604‒8. 链接1

[262] Hanakata PZ, Cubuk ED, Campbell DK, Park HS. Accelerated search and design of stretchable graphene kirigami using machine learning. Phys Rev Lett 2018;121(25):255304. 链接1

[263] Gu GX, Chen CT, Richmond DJ, Buehler MJ. Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment. Mater Horiz 2018;5(5):939‒45. 链接1

[264] Liu F, Jiang X, Wang X, Wang L. Machine learning-based design and optimization of curved beams for multistable structures and metamaterials. Extreme Mech Lett 2020;41:101002. 链接1

相关研究