期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第24卷 第5期 doi: 10.1016/j.eng.2022.01.015

平原河网区水动力重构理论与实践

a National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
b Yangtze Institute for Conservation and Green Development, Nanjing, 210098, China

收稿日期: 2021-05-11 修回日期: 2021-12-17 录用日期: 2022-01-05 发布日期: 2022-06-17

下一篇 上一篇

摘要

我国平原河网地区地势低洼,河道比降平缓,水动力弱,加上密集的人类活动,水安全问题十分突出,比如洪涝频发、水体自净能力差、水生态系统脆弱等。本文研究发现这些问题都与水动力有关,水流能量时空分布失衡是产生这些水问题的共同本源。由此,创建了平原河网区水动力重构理论。该理论在水量调控的基础上,深挖水动力及有限能量在水生态环境改善中的作用,优化布局水闸、泵站等水利工程体系,充分挖潜工程的综合效益。通过重构水动力时空分布来满足平原河网区复杂水问题统筹治理的需求。在此基础上,建立了完整的弱动力平原河网区多尺度水动力重构、多目标水力调控的理论方法和技术体系,提出了平原河网区水问题统筹治理原则。最后以扬州主城区河网活水提质为例,介绍该理论的实际应用及效果。

图片

图1

图2

图3

参考文献

[ 1 ] Liu C, Walling DE, He Y. Review: The International Sediment Initiative case studies of sediment problems in river basins and their management. Int J Sediment Res 2018;33(2):216‒9. 链接1

[ 2 ] Blum MD, Roberts HH. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat Geosci 2009;2(7):488‒91. 链接1

[ 3 ] Baptist MJ, Penning WE, Duel H, Smits AJM, Geerling GW, Van der Lee GEM, et al. Assessment of the effects of cyclic floodplain rejuvenation on flood levels and biodiversity along the Rhine River. River Res Appl 2004;20(3):285‒97. 链接1

[ 4 ] Giakoumis T, Voulvoulis N. The transition of EU water policy towards the Water Framework Directive’s integrated river basin management paradigm. Environ Manage 2018;62(5):819‒31. 链接1

[ 5 ] Song X, Ravesteijn W, Frostell B, Wennersten R. Managing water resources for sustainable development: the case of integrated river basin management in China. Water Sci Technol 2010;61(2):499‒506. 链接1

[ 6 ] Ruan R. Theory and practice of improving water quality by water resources diversion in plain river-net areas. Beijing: China Water & Power Press; 2006. Chinese.

[ 7 ] Tan P. The study on real-time optimization of water diversion project scheme on lowland river based on the variation of dissolved oxygen [dissertation]. Hangzhou: Zhejiang University; 2020. Chinese.

[ 8 ] Wang Y. Study on the impact factors of the urban river water quality [dissertation]. Suzhou: Suzhou University of Science and Technology; 2013. Chinese.

[ 9 ] Yi Y, Wang Z, Lu Y. Habitat suitability index model for Chinese Sturgeon in the Yangtze River. Adv Water Sci 2007;18(4):538‒43. Chinese.

[10] Zhong J, Zhang Q, Li X, Kang B. Effects of water velocity on the swimming behavior of Anabarilius grahami. Chin J Ecol 2013;32(3):655‒60. Chinese.

[11] Shi X, Xu J, Huang Z, Katopodis C, Ban X, Kynard B, et al. A computer-based vision method to automatically determine the 2-dimensional flow-field preference of fish. J Hydraul Res 2019;57(4):598‒602. 链接1

[12] Chen Y, Liao W, Peng Q, Chen D, Gao Y. A summary of hydrology and hydrodynamics conditions of four Chinese carp’s spawning. J Hydroecol 2009;2(2):130‒3. Chinese.

[13] Liao P, Hu X. Experimental study on the effect of flow velocity on algal growth. Beijing Water Res 2005;2:12‒4. Chinese.

[14] Arega F, Lee JHW, Tang H. Hydraulic jet control for river junction design of Yuen Long Bypass Floodway, Hong Kong. J Hydraul Eng 2008;134(1):23‒33. 链接1

[15] Tang H, Li F, Xiao Y, Xu X, Wang Z, Zhou C. Experimental study on effect of scour prevention and sedimentation promotion of bank protection of tetrahedron penetrating frame groups. Port Waterw Eng 2002; 34(9):25‒8. Chinese.

[16] Tang H, Lv S, Zhou Y, Xu X, Xiao Y. Water environment improvements in Zhenjiang City, China. P I Civil Eng Munic 2008;161(1):11‒6. 链接1

[17] Wang Y, Shen Z, Niu J, Liu R. Adsorption of phosphorus on sediments from the Three-Gorges Reservoir (China) and the relation with sediment compositions. J Hazard Mater 2009;162(1):92‒8. 链接1

[18] Dieter D, Herzog C, Hupfer M. Effects of drying on phosphorus uptake in re-flooded lake sediments. Environ Sci Pollut Res Int 2015;22(21):17065‒81. 链接1

[19] Zhu H, Zhang K, Zhong B, Wang D. Effects of particles and pore water in release of pollutants due to sediment resuspension. Chin J Hydrodynam 2011;26(5):631‒41. Chinese.

[20] Zhou X, Huang T, Tang Y. Effect of flow turbulence on release of heavy metals in rivers. J Hydraul Eng 1994;11:22‒5. Chinese.

[21] Marion A, Zaramella M. Diffusive behavior of bedform-induced hyporheic exchange in rivers. J Environ Eng 2005;131(9):1260‒6. 链接1

[22] Marion A, Bellinello M, Guymer I, Packman A. Effect of bed form geometry on the penetration of nonreactive solutes into a streambed. Water Resour Res 2002;38(10):27-1-27-12. 链接1

[23] Lee A, Aubeneau AF, Cardenas MB. The sensitivity of hyporheic exchange to fractal properties of riverbeds. Water Resour Res 2020;56(5): e2019WR026560. 链接1

[24] Jin G, Tang H, Li L, Barry DA. Prolonged river water pollution due to variable-density flow and solute transport in the riverbed. Water Resour Res 2015;51(4):1898‒915. 链接1

[25] Yi Q, Chen Q, Hu L, Shi W. Tracking nitrogen sources, transformation, and transport at a basin scale with complex plain river networks. Environ Sci Technol 2017;51(10):5396‒403. 链接1

[26] Chien N, Zhang R, Zhou Z. River fluvial mechanics. Beijing: Science Press; 1987. Chinese.

[27] Yuan S, Tang H, Li K, Xu L, Xiao Y, Gualtieri C, et al. Hydrodynamics, sediment transport and morphological features at the confluence between the Yangtze River and the Poyang Lake. Water Resour Res 2021;57(3):e2020WR028284. 链接1

[28] Wang N, Zhang C, Xiao Y, Jin G, Li L. Transverse hyporheic flow in the cross-section of a compound river system. Adv Water Resour 2018; 122:263‒77. 链接1

[29] Nepf HM. Hydrodynamics of vegetated channels. J Hydraul Res 2012;50(3):262‒79. 链接1

[30] Poggi D, Porporato A, Ridolfi L, Albertson JD, Katul GG. The effect of vegetation density on canopy sub-layer turbulence. Bound-Lay Meteorol 2004;111(3):565‒87. 链接1

[31] Ghisalberti M, Nepf HM. Mixing layers and coherent structures in vegetated aquatic flows. J Geophys Res-Oceans 2002;107(C2):3-1-3-11. 链接1

[32] Nepf HM, Ghisalberti M. Flow and transport in channels with submerged vegetation. Acta Geophys 2008;56(3):753‒77. 链接1

[33] Devi TB, Kumar B. Turbulent flow statistics of vegetative channel with seepage. J Appl Geophys 2015;123:267‒76. 链接1

[34] Caroppi G, Västilä K, Gualtieri P, Järvelä J, Giugni M, Rowin´ ski PM. Comparison of flexible and rigid vegetation induced shear layers in partly vegetated channels. Water Resour Res 2021;57(3):e2020WR028243. 链接1

[35] Einstein HA, Barbarossa NL. River channel roughness. Trans Am Soc Civ Eng 1952;117(1):1121‒32. 链接1

[36] Maddux TB, Nelson JM, McLean SR. Turbulent flow over three-dimensional dunes: 1. free surface and flow response. J Geophys Res Earth Surf 2003;108(F1):6009. 链接1

[37] Colombini M, Stocchino A. Ripple and dune formation in rivers. J Fluid Mech 2011;673:121‒31. 链接1

[38] Raudkivi AJ. Transition from ripples to dunes. J Hydraul Eng 2006;132(12):1316‒20. 链接1

[39] Chien N, Wan Z. Mechanics of sediment transport. Reston: American Society of Civil Engineers; 1999. 链接1

[40] Tang L, Wang X. Experimental study on three dimensional movements of particles I effects of particle diameter on velocity and concentration distributions. Int J Sediment Res 2009;24(2):159‒68. 链接1

[41] Tang L, Wang X. Experimental study on three dimensional movements of particles II effects of particle diameter on turbulence characteristics. Int J Sediment Res 2009;24(2):169‒76. 链接1

[42] Tsai CW. Flood routing in mild-sloped rivers—wave characteristics and downstream backwater effect. J Hydrol 2005;308(1‒4):151‒67.

[43] Wang C, Li G. The modelling of basin flood. J Hydraul Eng 1996;27(3):44‒50. Chinese.

[44] Huang Z, Ma X, Wang L, Zhang Y, Cheng G, Hu Z. Application of a nested grid hydrodynamic model to discharge pattern simulation overhaul conditions of Sanhe sluice. J Hohai Uni Nat Sci 2012;6:653‒8. Chinese.

[45] Ghalkhani H, Golian S, Saghafian B, Farokhnia A, Shamseldin A. Application of surrogate artificial intelligent models for real-time flood routing. Water Environ J 2013;27(4):535‒48. 链接1

[46] Chen X, Chau K, Wang W. A novel hybrid neural network based on continuity equation and fuzzy pattern-recognition for downstream daily river discharge forecasting. J Hydroinform 2015;17(5):733‒44. 链接1

[47] Tang H, Xin X, Dai W, Xiao Y. Parameter identification for modeling river network using a genetic algorithm. J Hydrodynam 2010;22(2): 246‒53. 链接1

[48] Shokri A, Haddad OB, Mariño MA. Multi-objective quantity‒quality reservoir operation in sudden pollution. Water Resour Manage 2014;28(2): 567‒86. 链接1

[49] Skardi MJE, Afshar A, Saadatpour M, Solis SS. Hybrid ACO‒ANN-based multi-objective simulation‒optimization model for pollutant load control at basin scale. Environ Model Assess 2015;20(1):29‒39. 链接1

相关研究