期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第14卷 第7期 doi: 10.1016/j.eng.2022.02.012

无源互调测量——挑战与解决方案

a General Test Systems Inc., Shenzhen 518000, China

b College of Electrical and Information Engineering, Hunan University, Changsha 410082, China

c UAq EMC Laboratory, Department of Industrial and Information Engineering and Economics, University of L' Aquila, L' Aquila 64100, Italy

收稿日期: 2021-08-21 修回日期: 2022-01-05 录用日期: 2022-02-28 发布日期: 2022-04-20

下一篇 上一篇

摘要

在现代无线通信系统中,信噪比(SNR)是最重要的性能指标之一。当部件的其他射频(RF)性能设计良好时,无源互调(PIM)干扰可能成为限制系统SNR的重要因素。无论是基站、室内分布式天线系统还是卫星系统,都存在严格的PIM级别要求,以最大程度地减少干扰并增强多载波网络中的网络容量。尤其是5G无线通信等大功率、大带宽的系统,PIM干扰更严重。由于无源互调的复杂性和不确定性,测量是研究和评估无线通信系统无源互调性能的最重要手段。本文介绍了国际电工委员会(IEC)等标准组织推荐的当前主要PIM 测量方法,以及PIM 测量中的几个关键挑战及其解决方案(包括PIM 测试仪的设计、
PIM源的定位、紧凑型PIM暗室的设计,以及PIM暗室的评估方法)。这些挑战对于解决实际无线通信系统中设备可能出现的PIM问题具有重要意义。

图片

图 1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

参考文献

[ 1 ] Lui PL. Passive intermodulation interference in communication systems. Electr Commun Eng J 1990;2(3):109‒18. 链接1

[ 2 ] Sanford J. Passive intermodulation considerations in antenna design. In: Proceedings of IEEE Antennas and Propagation Society International Symposium; 1993 Jun 28‒Jul 2; Ann Arbor, MI, USA. IEEE; 1993. p. 1651‒4. 链接1

[ 3 ] TR 37.808: Passive intermodulation (PIM) handling for base stations (BS). 3GPP standard. France: 3GPP; 2013.

[ 4 ] Butler R. PIM testing: advanced wireless services emphasize the need for better PIM control. Report. Soochow: CommScope; 2017.

[ 5 ] Hienonen S. Studies on microwave antennas: passive intermodulation distortion in antenna structures and design of microstrip antenna elements [dissertation]. Helsinki: Helsinki University of Technology; 2005. 链接1

[ 6 ] Wilkerson JR. Passive intermodulation distortion in radio frequency communication systems [dissertation]. Raleigh: North Carolina State University; 2010.

[ 7 ] Simmons JG. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J Appl Phys 1963;34(6):1793‒803. 链接1

[ 8 ] Higa WH. Spurious signals generated by electron tunneling on large reflector antennas. Proc IEEE 1975;63(2):306‒13. 链接1

[ 9 ] Bond C, Guenzer C, Carosella C. Intermodulation generation by electron tunneling through aluminum‒oxide films. Proc IEEE 1979;67(12):1643‒52. 链接1

[10] Sorolla E, Anza S, Gimeno B, Perez AMP, Vicente C, Gil J, et al. An analytical model to evaluate the radiated power spectrum of a multipactor discharge in a parallel-plate region. IEEE Trans Elect Devices 2008;55(8):2252‒8. 链接1

[11] Wen H, Yang H, Kuang H, Qin X, Cai G. Global threshold prediction of multicarrier multipactor with time distribution and material coefficients. IEEE Trans Electromagn Compat 2017;60(5):1163‒70. 链接1

[12] You JW, Wang HG, Zhang JF, Tan SR, Cui TJ. Accurate numerical analysis of nonlinearities caused by multipactor in microwave devices. IEEE Microw Wirel Compon Lett 2014;24(11):730‒2. 链接1

[13] Wilkerson JR, Gard KG, Schuchinsky AG, Steer MB. Electro‒thermal theory of intermodulation distortion in lossy microwave components. IEEE Trans Microw Theory Tech 2008;56(12):2717‒25. 链接1

[14] Chen X, Wang L, Pommerenke D, Yu M. Passive Intermodulation on coaxial connector under electro‒thermal‒mechanical multiphysics. IEEE Trans Microw Theory Tech 2021;70(1):169‒77. 链接1

[15] Ansuinelli P, Schuchinsky AG, Frezza F, Steer MB. Passive intermodulation due to conductor surface roughness. IEEE Trans Microw Theory Tech 2018;66(2):688‒99. 链接1

[16] Zhao X, He Y, Ye M, Gao F, Peng W, Li Y, et al. Analytic passive intermodulation model for flange connection based on metallic contact nonlinearity approximation. IEEE Trans Microw Theory Tech 2017;‍65(7):2279‒87. 链接1

[17] Vicente C, Hartnagel H. Passive-intermodulation analysis between rough rectangular waveguide flanges. IEEE Trans Microw Theory Tech 2005;‍53(8):2515‒25. 链接1

[18] Bahrami M, Culham J, Yovanovich M. Modeling thermal contact resistance: a scale analysis approach. J Heat Transf 2004;126(6):896‒905. 链接1

[19] Bailey GC, Ehrlich AC. A study of RF nonlinearities in nickel. J Appl Phys 1979;50(1):453‒61. 链接1

[20] Bertotti G. General properties of power losses in soft ferromagnetic materials. IEEE Trans Magn 2002;24(1):621‒30.

[21] Chen X, He Y. Reconfigurable passive intermodulation behavior on nickel-coated cell array. IEEE Trans Electromagn Compat 2017;59(4):1027‒34. 链接1

[22] Henrie J, Christianson AJ, Chappell WJ. Linear‍‒‍nonlinear interaction and passive intermodulation distortion. IEEE Trans Microw Theory Tech 2010;58(5):1230‒7. 链接1

[23] Henrie J, Christianson A, Chappell WJ. Engineered passive nonlinearities for broadband passive intermodulation distortion mitigation. IEEE Microw Wirel Compon Lett 2009;19(10):614‒6. 链接1

[24] Guo H, Yao Y, Xie Y. Evaluation of passive intermodulation from multiple connectors with generalized network method. IEEE Microw Wirel Compon Lett 2021;31(3):312‒5. 链接1

[25] Jin Q, Gao J, Flowers GT, Wu Y, Xie G. Modeling of passive intermodulation with electrical contacts in coaxial connectors. IEEE Trans Microw Theory Tech 2018;66(9):4007‒16. 链接1

[26] Jin Q, Gao J, Flowers GT, Wu Y, Xie G, Bi L. Modeling of passive intermodulation in connectors with coating material and iron content in base brass. IEEE Trans Microw Theory Tech 2019;67(4):1346‒56. 链接1

[27] Shitvov AP, Zelenchuk DE, Schuchinsky AG, Fusco VF. Passive intermodulation generation on printed lines: near-field probing and observations. IEEE Trans Microw Theory Tech 2008;56(12):3121‒8. 链接1

[28] Shitvov AP, Olsson T, Banna BE, Zelenchuk DE, Schuchinsky AG. Effects of geometrical discontinuities on distributed passive intermodulation in printed lines. IEEE Trans Microw Theory Tech 2010;58(2):356‒62. 链接1

[29] Rocas E, Collado C, Orloff ND, Mateu J, Padilla A, O’Callaghan JM, et al. Passive intermodulation due to self-heating in printed transmission lines. IEEE Trans Microw Theory Tech 2011;59(2):311‒22. 链接1

[30] Zelenchuk DE, Shitvov AP, Schuchinsky AG, Fusco VF. Passive intermodulation in finite lengths of printed microstrip lines. IEEE Trans Microw Theory Tech 2008;56(11):2426‒34. 链接1

[31] Kozlov DS, Shitvov AP, Schuchinsky AG, Steer MB. Passive intermodulation of analog and digital signals on transmission lines with distributed nonlinearities: modelling and characterization. IEEE Trans Microw Theory Tech 2016;64(5):1383‒95. 链接1

[32] Vicente C, Wolk D, Hartnagel HL, Gimeno B, Boria VE, Raboso D. Experimental analysis of passive intermodulation at waveguide flange bolted connections. IEEE Trans Microw Theory Tech 2007;55(5):1018‒28. 链接1

[33] Liu Y, Mao YR, Xie YJ, Tian ZH. Evaluation of passive intermodulation using full-wave frequency-domain method with nonlinear circuit model. IEEE Trans Veh Technol 2016;65(7):5754‒7. 链接1

[34] Mao YR, Liu Y, Xie YJ, Tian ZH. Simulation of electromagnetic performance on mesh reflector antennas: three-dimensional mesh structures with lumped boundary conditions. IEEE Trans Antennas Propag 2015;63(10):4599‒603. 链接1

[35] Figueiredo R, Carvalho NB, Piacibello A, Camarchia V. Nonlinear dynamic RF system characterization: envelope intermodulation distortion profiles—a noise power ratio-based approach. IEEE Trans Microw Theory Tech 2021;‍69(9):4256‒71. 链接1

[36] Chen X, Sun D, Cui W, He Y. A folded contactless waveguide flange for low passive-intermodulation applications. IEEE Microw Wirel Compon Lett 2018;28(10):864‒6. 链接1

[37] Henrie J, Christianson A, Chappell WJ. Cancellation of passive intermodulation distortion in microwave networks. In: Proceedings of 2008 38th European Microwave Conference; 2008 Oct 27‍‒‍31; Amsterdam, Netherlands. IEEE; 2008. p. 1153‒6. 链接1

[38] Waheed MZ, Korpi D, Anttila L, Kiayani A, Kosunen M, Stadius K, et al. Passive intermodulation in simultaneous transmit-receive systems: modeling and digital cancellation methods. IEEE Trans Microw Theory Tech 2020;68(9):3633‒52. 链接1

[39] Jin Q, Gao J, Huang H, Bi L. Mitigation methods for passive intermodulation distortion in circuit systems using signal compensation. IEEE Microw Wirel Compon Lett 2020;30(2):205‒8. 链接1

[40] Miao X, Tian L. Digital cancellation scheme and hardware implementation for high-order passive intermodulation interference based on Hammerstein model. China Commun 2019;16(9):165‒76. 链接1

[41] Keehr EA, Hajimiri A. Successive regeneration and adaptive cancellation of higher order intermodulation products in RF receivers. IEEE Trans Microw Theory Tech 2011;59(5):1379‒96. 链接1

[42] IEC62037: Passive RF and Microw devices intermodulation level measurement. International standard. Geneva: International Electrotechnical Commission; 2021.

[43] Wilkerson JR, Gard KG, Steer MB. Automated broadband high-dynamic-range nonlinear distortion measurement system. IEEE Trans Microw Theory Tech 2010;58(5):1273‒82. 链接1

[44] Waheed MZ, Campo PP, Korpi D, Kiayani A, Anttila L, Valkama M. Digital cancellation of passive intermodulation in FDD transceivers. In: Proceedings of 2018 52nd Asilomar Conference on Signals, Systems, and Computers; 2018 Oct 28‒31; Pacific Grove, CA, USA. IEEE; 2018. p. 1375‒81. 链接1

[45] Wetherington JM, Steer MB. Robust analog canceller for high-dynamic-range radio frequency measurement. IEEE Trans Microw Theory Tech 2012;60(6):1709‒19. 链接1

[46] Range to fault (RTF) [Internet]. Spokane Valley: Kaelus; c2020 [cited 2021 Aug 30]. Available from: https://www.‍kaelus.‍com/en/test-measurement-solutions/portable-pim-testing/range-to-fault-(rtf)-en. 链接1

[47] PIM rack analyzer [Internet]. Fridolfing: Rosenberger; c2018 [cited 2021 Aug 30]. Available from: https://www.rosenberger.com/product/pim-rack-analyzer/. 链接1

[48] anritsu.‍com [Internet]. Kanagawa: Anritsu; c2022 [cited 2021 Aug 30]. Available from: https://www.‍anritsu.‍com/en-us/test-measurement/support/downloads?model=MW82119B. 链接1

[49] Hienonen S, Vainikainen P, Raisanen AV. Sensitivity measurements of a passive intermodulation near-field scanner. IEEE Antennas Propag Mag 2003;‍45(4):124‒9. 链接1

[50] Hienonen S, Golikov V, Vainikainen P, Raisanen AV. Near-field scanner for the detection of passive intermodulation sources in base station antennas. IEEE Trans Electromagn Compat 2004;46(4):661‒7. 链接1

[51] Shitvov AP, Zelenchuk DD, Schuchinsky AG, Fusco VF, Buchanan N. Mapping of passive intermodulation products on microstrip lines. In: Proceedings of 2008 IEEEMTT-S International Microwave Symposium Digest; 2008 Jun 15‒20; Atlanta, GA, USA. IEEE; 2008. p. 1573‒6. 链接1

[52] Oonishi K, Kuga N. A consideration of sensitivity of non-contact PIM measurement using a coaxial probe. In: Proceedings of 2008 Asia-Paci‍fi‍c Microwave Conference; 2008 Dec 16‒20; Hong Kong, China. IEEE; 2008.p. 1‒4. 链接1

[53] Yang S, Wu W, Xu S, Zhang YJ, Stutts D, Pommerenke DJ. A passive intermodulation source identification measurement system using a vibration modulation method. IEEE Trans Electromagn Compat 2017;59(6):1677‒84. 链接1

[54] Zhang M, Zheng C, Wang X, Chen X, Cui W, Li J, et al. Localization of passive intermodulation based on the concept of k-space multicarrier signal. IEEE Trans Microw Theory Tech 2017;65(12):4997‒5008. 链接1

[55] Aspden PL, Anderson AP, Bennett JC. Microwave holographic imaging of intermodulation product sources applied to reflector antennas. In: Proceedings of 1989 Sixth International Conference on Antennas and Propagation; 1989 Apr 4‒7; Coventry, UK. IET; 1989. p. 463‒7. 链接1

[56] Aspden PL, Anderson AP. Identification of passive intermodulation product generation on microwave reflecting surfaces. IEE Proc H 1992;139(4):337‒42. 链接1

[57] Aspden PL, Anderson AP, Bennett JC. Evaluation of the intermodulation product performance of reflector antennas and related structures by microwave imaging. In: Proceedings of 1989 19th European Microwave Conference; 1989 Sep 4‒7; London, UK. IEEE; 1989. p. 853‒8. 链接1

[58] Yong S, Yang S, Zhang L, Chen X, Pommerenke DJ, Khilkevich V. Passive intermodulation source localization based on emission source microscopy. IEEE Trans Electromagn Compat 2020;62(1):266‒71. 链接1

[59] Chen X, An L, Yu M, Pommerenke DJ. Waveguide cell with water filling for passive intermodulation localization on planar circuits. IEEE Microw Wirel Compon Lett 2021;31(11):1247‒50. 链接1

[60] Cai Z, Zhou Y, Liu L, Qi Y, Yu W, Fan J, et al. Small anechoic chamber design method for on-line and on-site passive intermodulation measurement. IEEE Trans Instrum Meas 2020;69(6):3377‒87. 链接1

[61] Cai Z, Zhou Y, Liu L, Paulis FD, Qi Y, Orlandi A. A method for measuring the maximum measurable gain of a passive intermodulation chamber. Electronics 2021;10(7):770. 链接1

[62] Denisowski P. Understanding PIM. Report. Munich: Rohde & Schwarz; 2019 Nov.

[63] ITU-R SM.1446: Definition and measurement of intermodulation products in transmitter using frequency, phase, or complex modulation techniques. International standard. Geneva: Radiocommunication Sector of ITU; 2011.

[64] Kim JT, Cho IK, Jeong MY, Choy TG. Effects of external PIM sources on antenna PIM measurements. ETRI J 2002;24(6):435‒42. 链接1

[65] Shi C, Sánchez-Sinencio E. On-chip two-tone synthesizer based on a mixing-FIR architecture. IEEE J Solid-State Circuits 2017;52(8):2105‒16. 链接1

[66] Yoshida S, Kuga N. A planar band rejection filter composed of slit-loaded side-coupled filter for 3rd-order PIM measurement. In: Proceedings of 2009 Asia Paci‍fi‍c Microwave Conference; 2009 Dec 7‍‒‍10; Singapore. IEEE; 2009. p.2613‒6. 链接1

[67] Smacchia D, Soto P, Guglielmi M, Morro JV, Boria V, Raboso D. Implementation of waveguide terminations with low-passive intermodulation for conducted test beds in backward configuration. IEEE Microw Wirel Compon Lett 2019;29(10):659‒61. 链接1

[68] Maheshwari P, Kajbaf H, Khilkevich VV, Pommerenke D. Emission source microscopy technique for EMI source localization. IEEE Trans Electromagn Compat 2016;58(3):729‒37. 链接1

[69] Zhang L, Khilkevich VV, Jiao X, Li X, Toor S, Bhobe AU, et al. Sparse emission source microscopy for rapid emission source imaging. IEEE Trans Electromagn Compat 2017;59(2):729‒38. 链接1

[70] Sørensen M, Kajbaf H, Khilkevich VV, Zhang L, Pommerenke D. Analysis of the effect on image quality of different scanning point selection methods in sparse ESM. IEEE Trans Electromagn Compat 2019;61(6):1823‒31. 链接1

[71] Zhang Y, Luo Q, Zhu Y, Liu L. Development of conductive expended polypropylene rigid foam for OTA test chamber. Saf EMC 2017;16:59‒62.

[72] Bolli P, Selleri S, Pelosi G. Passive intermodulation on large reflector antennas. IEEE Antennas Propag Mag 2002;44(5):13‒20. 链接1

[73] Smacchia D, Soto P, Boria VE, Guglielmi M, Carceller C, Ruiz Garnica J, et al. Advanced compact setups for passive intermodulation measurements of satellite hardware. IEEE Trans Microw Theory Tech 2018;66(2):700‒10. 链接1

相关研究