期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第23卷 第4期 doi: 10.1016/j.eng.2022.02.017

膜接触破乳——用于油包水乳液分离的超疏水ZIF-8@rGO膜

a State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

b State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, China

c Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover D-30167, Germany

d Guangdong Engineering Technology Research Center of Advanced Insulating Coating, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China

收稿日期: 2021-10-15 修回日期: 2021-12-18 录用日期: 2022-02-14 发布日期: 2023-02-21

下一篇 上一篇

摘要

水-油界面不平衡是实现油包水乳液破乳的关键。传统膜通常是依赖较高的跨膜压力破坏界面平衡而实现破乳。本文提出了可自然、快速地破坏水-油界面平衡的“接触破乳”的概念,开发了一种对有机组分具有高通量的新型破乳分离膜。具体制备过程分为两步,首先通过真空辅助抽滤法在聚四氟乙烯(PTFE)基底上组装ZIF-8@rGO微球(ZGS)层,再采用聚二甲基硅氧烷(PDMS)交联溶液进行固定化处理。由于ZGS表面为微纳米阶层结构,所制备的ZIF-8@rGO@PDMS/PTFE(ZGPP)膜表面展现出超疏水性特性,当表面活性剂稳定的油包水乳液接触到膜表面时,微纳结构的超疏水膜表面会引起水-油界面不平衡。ZGPP膜对油包水乳液具有良好的分离破乳性能,在0.15 bar(15 kPa)的低跨膜压力下,分离效率可以达到99.57%,通量可达到2254 L·m‒2·h‒1,且对于表面活性剂稳定的纳米级甲苯水乳液(平均液滴尺寸为57 nm)的体系也可以实现破乳分离。“接触破乳”概念的提出有望为开发新一代油包水乳液分离的破乳膜提供新的思路。

补充材料

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Ghaffar A, Chen C, Zhu X, Chen B. Underwater superoleophobic PVA‒GO nanofibrous membranes for emulsified oily water purification. Environ Ence Nano 2019;6(12):3723‒33. 链接1

[ 2 ] Zeng X, Qian L, Yuan X, Zhou C, Li Z, Cheng J, et al. Inspired by Stenocara beetles: from water collection to high-efficiency water-in-oil emulsion separation. ACS Nano 2017;11(1):760‒9. 链接1

[ 3 ] Zhang W, Liu N, Cao Y, Lin X, Liu Y, Feng L. Superwetting porous materials for wastewater treatment: from immiscible oil/water mixture to emulsion separation. Adv Mater Interfaces 2017;4(10):1600029. 链接1

[ 4 ] Chen C, Chen S, Chen L, Yu Y, Weng D, Mahmood A, et al. Underoil superhydrophilic metal felt fabricated by modifying ultrathin fumed silica coatings for the separation of water-in-oil emulsions. ACS Appl Mater Interfaces 2020;12(24):27663‒71. 链接1

[ 5 ] Wei Y, Qi H, Gong X, Zhao S. Specially wettable membranes for oil‒water separation. Adv Mater Interfaces 2018;5(23):1800576. 链接1

[ 6 ] Cheryan M, Rajagopalan N. Membrane processing of oily streams. Wastewater treatment and waste reduction. J Membr Sci 1998;151(1):13‒28. 链接1

[ 7 ] Tummons E, Han Q, Tanudjaja HJ, Hejase CA, Chew JW, Tarabara VV. Membrane fouling by emulsified oil: a review. Sep Purif Technol 2020;248:116919. 链接1

[ 8 ] Zhang W, Shi Z, Zhang F, Liu X, Jin J, Jiang L. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv Mater 2013;25(14):2071‒6. 链接1

[ 9 ] Macedonio F, Drioli E. Membrane engineering for green process engineering. Engineering 2017;3(3):290‒8. 链接1

[10] Zhang G, Jin W, Xu N. Design and fabrication of ceramic catalytic membrane reactors for green chemical engineering applications. Engineering 2018;4(6):848‒60. 链接1

[11] Dai L, Huang K, Xia Y, Xu Z. Two-dimensional material separation membranes for renewable energy purification, storage, and conversion. Green Energy Environ 2021;6(2):193‒211. 链接1

[12] Wang F, Lei S, Xue M, Ou J, Li W. In situ separation and collection of oil from water surface via a novel superoleophilic and superhydrophobic oil containment boom. Langmuir 2014;30(5):1281‒9. 链接1

[13] Huang Y, Xiao C, Huang Q, Liu H, Guo Z, Sun K. Robust preparation of tubular PTFE/FEP ultrafine fibers-covered porous membrane by electrospinning for continuous highly effective oil/water separation. J Membr Sci 2018;568:87‒96. 链接1

[14] Xue Z, Wang S, Lin L, Chen L, Liu M, Feng L, et al. A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv Mater 2011;23(37):4270‒3. 链接1

[15] Yong J, Huo J, Chen F, Yang Q, Hou X. Oil/water separation based on natural materials with super-wettability: recent advances. Phys Chem Chem Phys 2018;20(39):25140‒63. 链接1

[16] Liu YQ, Zhang YL, Fu XY, Sun HB. Bioinspired underwater superoleophobic membrane based on a graphene oxide coated wire mesh for efficient oil/water separation. ACS Appl Mater Interfaces 2015;7(37):20930‒6. 链接1

[17] Lin X, Heo J, Jeong H, Choi M, Chang M, Hong J. Robust superhydrophobic carbon nanofiber network inlay-gated mesh for water-in-oil emulsion separation with high flux. J Mater Chem A 2016;4(46):17970‒80. 链接1

[18] Yin X, Wang Z, Shen Y, Mu P, Zhu G, Li J. Facile fabrication of superhydrophobic copper hydroxide coated mesh for effective separation of water-in-oil emulsions. Sep Purif Technol 2020;230:115856. 链接1

[19] Kang H, Zhang X, Li L, Zhao B, Ma F, Zhang J. Polydopamine and poly(dimethylsiloxane) modified superhydrophobic fiberglass membranes for efficient water-in-oil emulsions separation. J Colloid Interface Sci 2020;559:178‒85. 链接1

[20] Huang M, Si Y, Tang X, Zhu Z, Ding B, Liu L, et al. Gravity driven separation of emulsified oil‒water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes. J Mater Chem A 2013;1(45):14071‒4. 链接1

[21] Wang X, Xiao C, Liu H, Chen M, Hao J, Wu Y. A study on fabrication of PVDF‒HFP/PTFE blend membranes with controllable and bicontinuous structure for highly effective water-in-oil emulsion separation. RSC Adv 2018;8 (49):27754‒62. 链接1

[22] Chen L, Si Y, Zhu H, Jiang T, Guo Z. A study on the fabrication of porous PVDF membranes by in-situ elimination and their applications in separating oil/water mixtures and nano-emulsions. J Membr Sci 2016;520:760‒8. 链接1

[23] Wang X, Xiao C, Liu H, Huang Q, Hao J, Fu H. Poly(vinylidene fluoride‒hexafluoropropylene) porous membrane with controllable structure and applications in efficient oil/water separation. Materials 2018;11(3):443. 链接1

[24] Chen R, Xu J, Li S, Li Q, Wu H, He Q, et al. Multiscale-structured superhydrophobic/superoleophilic SiO2 composite poly(ether sulfone) membranes with high efficiency and flux for water-in-oil emulsions separation under harsh conditions. New J Chem 2020;44(10):3824‒7. 链接1

[25] Lei T, Lu D, Xu Z, Xu W, Liu J, Deng X, et al. 2D→3D conversion of superwetting mesh: a simple but powerful strategy for effective and efficient oil/water separation. Sep Purif Technol 2020;242:116244. 链接1

[26] Ji D, Xiao C, An S, Liu H, Chen K, Hao J, et al. Preparation of PSF/FEP mixed matrix membrane with super hydrophobic surface for efficient water-in-oil emulsion separation. RSC Adv 2018;8(18):10097‒106. 链接1

[27] Gao N, Xu ZK. Ceramic membranes with mussel-inspired and nanostructured coatings for water-in-oil emulsions separation. Sep Purif Technol 2019;212:737‒46. 链接1

[28] Gu J, Xiao P, Chen J, Liu F, Huang Y, Li G, et al. Robust preparation of superhydrophobic polymer/carbon nanotube hybrid membranes for highly effective removal of oils and separation of water-in-oil emulsions. J Mater Chem A 2014;2(37):15268‒72. 链接1

[29] Wu J, Li H, Lai X, Chen Z, Zeng X. Superhydrophobic polydimethylsiloxane@multiwalled carbon nanotubes membrane for effective water-in-oil emulsions separation and quick deicing. Ind Eng Chem Res 2019;58(20):8791‒9. 链接1

[30] Yang J, Li HN, Chen ZX, He A, Zhong QZ, Xu ZK. Janus membranes with controllable asymmetric configurations for highly efficient separation of oilin- water emulsions. J Mater Chem A 2019;7(13):7907‒17. 链接1

[31] An YP, Yang J, Yang HC, Wu MB, Xu ZK. Janus membranes with charged carbon nanotube coatings for deemulsification and separation of oil-in-water emulsions. ACS Appl Mater Interfaces 2018;10(11):9832‒40. 链接1

[32] Shi Z, Zhang W, Zhang F, Liu X, Wang D, Jin J, et al. Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films. Adv Mater 2013;25(17):2422‒7. 链接1

[33] Sun T, Feng L, Gao X, Jiang L. Bioinspired surfaces with special wettability. Acc Chem Res 2005;38(8):644‒52. 链接1

[34] Pan J, Xiao C, Huang Q, Liu H, Zhang T. ECTFE hybrid porous membrane with hierarchical micro/nano-structural surface for efficient oil/water separation. J Membr Sci 2017;524:623‒30. 链接1

[35] Yuan X, Li W, Zhu Z, Han N, Zhang X. Thermo-responsive PVDF/PSMA composite membranes with micro/nanoscale hierarchical structures for oil/ water emulsion separation. Colloids Surf A 2017;516:305‒16. 链接1

[36] Wei Y, Xie Z, Qi H. Superhydrophobic‒superoleophilic SiC membranes with micro-nano hierarchical structures for high-efficient water-in-oil emulsion separation. J Membr Sci 2020;601:117842. 链接1

[37] Gu J, Fan H, Li C, Caro J, Meng H. Robust superhydrophobic/superoleophilic wrinkled microspherical MOF@rGO composites for efficient oil‍‒‍water separation. Angew Chem Int Ed Engl 2019;58(16):5297‒301. 链接1

[38] Mao H, Li SH, Zhang AS, Xu LH, Lu JJ, Zhao ZP. Novel MOF-capped halloysite nanotubes/PDMS mixed matrix membranes for enhanced n-butanol permselective pervaporation. J Membr Sci 2020;595:117543. 链接1

[39] Zhang WD, Sun W, Yang J, Ren ZQ. The study on pervaporation behaviors of dilute organic solution through PDMS/PTFE composite membrane. Appl Biochem Biotechnol 2010;160(1):156‒67. 链接1

[40] Zhang N, Wu H, Li F, Dong S, Yang L, Ren Y, et al. Heterostructured filler in mixed matrix membranes to coordinate physical and chemical selectivities for enhanced CO2 separation. J Membr Sci 2018;567:272‒80. 链接1

[41] Zhu Y, Wang J, Zhang F, Gao S, Wang A, Fang W, et al. Zwitterionic nanohydrogel grafted PVDF membranes with comprehensive antifouling property and superior cycle stability for oil-in-water emulsion separation. Adv Funct Mater 2018;28(40):1804121. 链接1

[42] Zhang WH, Yin MJ, Zhao Q, Jin CG, Wang N, Ji S, et al. Graphene oxide membranes with stable porous structure for ultrafast water transport. Nat Nanotechnol 2021;16(3):337‒43. 链接1

相关研究