期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第18卷 第11期 doi: 10.1016/j.eng.2022.03.010

基于实时CT扫描技术的CO2和N2交替注入条件下煤吸附膨胀和解吸收缩规律研究

a Department of Earth Science and Engineering, Imperial College London, London SW7 2BP, UK
b Deep Earth Energy Laboratory, Department of Civil Engineering, Monash University, Melbourne, Victoria, 3800, Australia
c Institute of Theoretical Geophysics, King’s College, Cambridge CB2 1ST, UK

收稿日期: 2021-11-29 修回日期: 2022-02-20 录用日期: 2022-03-17 发布日期: 2022-04-15

下一篇 上一篇

摘要

深部煤层是分布最广泛的适宜二氧化碳(CO2)地质封存的地层之一,且通常位于大型CO2排放源附近。将CO2注入到煤层中具有巨大的CO2封存潜力,同时可以提高煤层气的采收率(CO2-ECBM)。近年来,多个国家在煤层中已经开展了CO2-ECBM 的先导试验,并取得了良好的可行性验证效果。然而,目前CO2-ECBM先导实验仍存在技术问题需要解决,即CO2的注入会引起煤层渗透率降低进而影响长期注入能力。本文采用原位同步辐射X射线显微CT扫描技术,首次在原位条件下直接证明了注入氮气(N2)可以置换解吸CO2并减小因CO2吸附引起的煤基质膨胀,进而重新打开因为CO2吸附而闭合的裂隙促使渗透率回升。研究结果表明,煤层中注入经过简单处理的烟道气(主要成分为N2和CO2),是技术上可行的CO2-ECBM 替代方案。首先,发电厂产生的烟道气可以在去除颗粒物后直接注入,从而避免了较高的CO2分离成本。其次,N2的存在可以使煤层保持较高的渗透率,实现长期CO2注入封存和煤层气增产。总之,深部煤层中注入烟道气一方面可以实现CO2大量封存,另一方面可以强化煤层气开采,为煤矿实现净零排放提供了一条有效途径。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Keeling. The Keeling Curve [Internet]. 2020 [cited 2020 Mar 13]. Available from: https://scripps.ucsd.edu/programs/keelingcurve/. 链接1

[ 2 ] IPCC. Global Warming of 1.5 ℃. An IPCC Special Report on the impacts of global warming of 1.5 ℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Report: IPCC; 2018. 链接1

[ 3 ] Bickle MJ. Geological carbon storage. Nat Geosci 2009;2(12):815‒8. 链接1

[ 4 ] Huppert HE, Neufeld JA. The fluid mechanics of carbon dioxide sequestration. Annu Rev Fluid Mech 2014;46(1):255‒72. 链接1

[ 5 ] IPCC. IPCC special report on carbon dioxide capture and storage. In: Metz B, Davidson O, de Coninck HC, Loos M, Meyer LA, editors. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. IPCC; 2005.

[ 6 ] Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, et al. Carbon capture and storage (CCS): the way forward. Energy Environ Sci 2018;11(5):1062‒176. 链接1

[ 7 ] Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Mac Dowell N, et al. Carbon capture and storage update. Energy Environ Sci 2014;7(1):130‒89. 链接1

[ 8 ] IEA. Technology Roadmap: carbon capture and storage Report. Paris: International Energy Agency; 2013.

[ 9 ] Cook PJ editor Geologically storing carbon: learning from the Otway Project experience. Collingwood: CSIRO Publishing; 2014. 链接1

[10] Metz B, Davidson O, de Coninck H, Loos M, Meyer L. IPCC special report on carbon dioxide capture and storage. Report. Geneva: Intergovernmental Panel on Climate Change: 2005 Sep.

[11] Liu Y, Rui Z, Yang T, Dindoruk B. Using propanol as an additive to CO2 for improving CO2 utilization and storage in oil reservoirs. Appl Energy 2022;311:118640. 链接1

[12] Liu Y, Rui Z. A storage-driven CO2 EOR for net-zero emission target. Engineering. . . 10.1016/j.eng.2022.02.010

[13] White CM, Smith DH, Jones KL, Goodman AL, Jikich SA, LaCount RB, et al. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery a review. Energy Fuels 2005;19(3):659‒724. 链接1

[14] Mukherjee M, Misra S. A review of experimental research on Enhanced Coal Bed Methane (ECBM) recovery via CO2 sequestration. Earth Sci Rev 2018;179:392‒410. 链接1

[15] Harpalani S, Prusty BK, Dutta P. Methane/CO2 sorption modeling for coalbed methane production and CO2 sequestration. Energy Fuels 2006;20(4):1591‒9. 链接1

[16] Godec M, Koperna G, Gale J. CO2-ECBM: a review of its status and global potential. Energy Procedia 2014;63:5858‒69. 链接1

[17] Fulton PF, Parente CA, Rogers BA, Shah N, Reznik A. A laboratory investigation of enhanced recovery of methane from coal by carbon dioxide injection. In: Proceedings of the SPE Unconventional Gas Recovery Symposium; 1980 May 18‒21; Pittsburgh, PA, USA. Richardson: OnePetro; 1980. 链接1

[18] Reznik AA, Singh PK, Foley WL. An analysis of the effect of CO2 injection on the recovery of in situ methane from bituminous coal: an experimental simulation. Soc Pet Eng J 1984;24(05):521‒8. 链接1

[19] Gunter WD, Gentzis T, Rottenfusser BA, Richardson R. Deep coalbed methane in Alberta, Canada: a fuel resource with the potential of zero greenhouse gas emissions. Energy Convers Manage 1997;38:S217‒22. 链接1

[20] Stevens SH, Spector D, Riemer P. Enhanced coalbed methane recovery using CO2 injection: worldwide resource and CO2 sequestration potential. In: Proceedings of the SPE International Oil and Gas Conference and Exhibition in China; 1998 Nov 2‒6; Beijing, China. Richardson: OnePetro; 1998. 链接1

[21] Pan Z, Ye J, Zhou F, Tan Y, Connell LD, Fan J. CO2 storage in coal to enhance coalbed methane recovery: a review of field experiments in China. Int Geol Rev 2018;60(5‒6):754‒76.

[22] Fujioka M, Yamaguchi S, Nako M. CO2-ECBM field tests in the Ishikari Coal Basin of Japan. Int J Coal Geol 2010;82(3‒4):287‒98.

[23] Wong S, Law D, Deng X, Robinson J, Kadatz B, Gunter WD, et al. Enhanced coalbed methane and CO2 storage in anthracitic coals—micro-pilot test at south Qinshui, Shanxi, China. Int J Greenh Gas Control 2007;1(2):215‒22. 链接1

[24] van Bergen F, Pagnier H, Krzystolik P. Field experiment of enhanced coalbed methane-CO2 in the upper Silesian basin of Poland. Environ Geosci 2006;13(3):201‒24. 链接1

[25] Reeves SR. The Coal-Seq project: key results from field, laboratory, and modeling studies. In: Rubin ES, Keith DW, Gilboy CF, Wilson M, Morris T, Gale J, Thambimuthu K, editors. the 7th International Conference on Greenhouse Gas Control Technologies; 2004 Sep; Vancouver, Canada. Amsterdam: Elsevier; 2004. p. 1399‒403. 链接1

[26] Fokker PA, van der Meer LGH. The injectivity of coalbed CO2 injection wells. Energy 2004;29(9‒10):1423‒9.

[27] Karacan CÖ. Heterogeneous sorption and swelling in a confined and stressed coal during CO2 injection. Energy Fuels 2003;17(6):1595‒608. 链接1

[28] Walker Jr PL, Verma SK, Rivera-Utrilla J, Khan MR. A direct measurement of expansion in coals and macerais induced by carbon dioxide and methanol. Fuel 1988;67(5):719‒26. 链接1

[29] Zhang X, Ranjith PG, Li D, Perera MSA, Ranathunga AS, Zhang B. CO2 enhanced flow characteristics of naturally-fractured bituminous coals with N2 injection at different reservoir depths. J CO2 Util 2018;28:393‒402. 链接1

[30] Kiyama T, Nishimoto S, Fujioka M, Xue Z, Ishijima Y, Pan Z, et al. Coal swelling strain and permeability change with injecting liquid/supercritical CO2 and N2 at stress-constrained conditions. Int J Coal Geol 2011;85(1):56‒64. 链接1

[31] Zhang G, Ranjith PG, Wu B, Perera MSA, Haque A, Li D. Synchrotron X-ray tomographic characterization of microstructural evolution in coal due to supercritical CO2 injection at in-situ conditions. Fuel 2019;255:115696. 链接1

[32] Zhang G, Ranjith PG, Liang W, Haque A, Perera MSA, Li D. Stress-dependent fracture porosity and permeability of fractured coal: an in-situ X-ray tomography study. Int J Coal Geol 2019;213:103279. 链接1

[33] Zhang B, Liang W, Ranjith PG, Li Z, Li C, Hou D. Coupling effects of supercritical CO2 sequestration in deep coal seam. Energy Fuels 2019;33(1):460‒73. 链接1

[34] Orr Jr FM. Onshore geologic storage of CO2. Science 2009;325(5948):1656‒8. 链接1

[35] Brace WF, Walsh J, Frangos WT. Permeability of granite under high pressure. J Geophys Res 1968;73(6):2225‒36. 链接1

[36] Heller R, Vermylen J, Zoback M. Experimental investigation of matrix permeability of gas shales. AAPG Bull 2014;98(5):975‒95. 链接1

[37] Mayo SC, Gureyev TE, Nesterets YI, Thompson DA, Siu KKW, Wallwork K. A dedicated micro-CT beamline for the Australian Synchrotron and the RemoteCT project. J Phys: Conf Ser 2013;463:012002. 链接1

[38] Zhang G, Ranjith PG, Perera MSA, Haque A, Choi X, Sampath KSM. Characterization of coal porosity and permeability evolution by demineralisation using image processing techniques: a micro-computed tomography study. J Nat Gas Sci Eng 2018;56:384‒96. 链接1

[39] Youssef S, Rosenberg E, Gland NF, Kenter JA, Skalinski M, Vizika O, et al. High resolution CT and pore-network models to assess petrophysical properties of homogeneous and heterogeneous carbonates. In: Proceedings of the SPE/EAGE Reservoir Characterization and Simulation Conference; 2007 Oct 28‒31; Abu Dhabi, UAE. Richardson: OnePetro; 2007. 链接1

[40] Gunter W. Coalbed methane, a fossil fuel resource with the potential for zero greenhouse gas emissions—the Alberta, Canada Program 1996‒2009: a summary. Alberta CO2-ECBM research and field pilots summary. Alberta Research Council; 2009.

[41] Mavor MJ, Gunter WD, Robinson JR. Alberta multiwell micro-pilot testing for CBM properties, enhanced methane recovery and CO2 storage potential. In: Proceedings of the SPE Annual Technical Conference and Exhibition; 2004 Sep 26‒29; Houston, Texas, USA. Richardson: OnePetro; 2004. 链接1

[42] Talapatra A, Halder S, Chowdhury AI. Enhancing coal bed methane recovery: using injection of nitrogen and carbon dioxide mixture. Petrol Sci Technol 2021;39(2):49‒62. 链接1

[43] Stevens SH, Kuuskraa VA, Gale J, Beecy D. CO2 injection and sequestration in depleted oil and gas fields and deep coal seams: worldwide potential and costs. Environ Geosci 2001;8(3):200‒9. 链接1

[44] Davis SJ, Lewis NS, Shaner M, Aggarwal S, Arent D, Azevedo IL, et al. Net-zero emissions energy systems. Science 2018;360(6396):eaas9793. 链接1

[45] Xu X, Song C, Wincek R, Andresen JM, Miller BG, Scaroni AW. Separation of CO2 from power plant flue gas using a novel CO2 “molecular basket” adsorbent. Fuel Chem Div Prepr 2003;48(1):162‒3.

[46] Wong S, Gunter W, Mavor M. Economics of CO2 sequestration in coalbed methane reservoirs. In: Proceedings of the SPE/CERI Gas Technology Symposium; 2000 Apr 3‒5; Calgary, Alberta, Canada. Richardson: OnePetro; 2000. 链接1

[47] Wong S, Gunter W, Law D, Mavor M. Economics of flue gas injection and CO2 sequestration in coalbed methane reservoirs. In: Williams D, Durie B, McMullan P, Paulson C Smith, A, editors. In: Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies. Cairns: CSIRO Publishing; 2001. p. 543‒8. †† https://www.massive.org.au. 链接1

相关研究