期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第23卷 第4期 doi: 10.1016/j.eng.2022.03.017

粤港澳大湾区CO2排放趋势、驱动因素及减排路径

a Key Laboratory of City Cluster Environmental Safety and Green Development, Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
b The Bartlett School of Construction and Project Management, University College London, London, WC1E 7HB, United Kingdom
c Integrated Research for Energy, Environment and Society (IREES), Energy and Sustainability Research Institute Groningen, University of Groningen, Groningen, 9747 AG, Netherlands
d Department of Earth System Sciences, Tsinghua University, Beijing 100080, China

收稿日期: 2021-07-31 修回日期: 2022-02-21 录用日期: 2022-03-02 发布日期: 2022-05-25

下一篇 上一篇

摘要

粤港澳大湾区是我国为建设世界级城市群提出的国家战略,其CO2排放趋势、社会经济驱动因素和减排路径对区域经济高质量发展具有重要意义。本研究编制了2000—2019 年粤港澳大湾区CO2排放清单,采用对数平均迪氏指数法探究CO2排放的关键驱动力。结果表明,粤港澳大湾区CO2排放在2017 年后明显放缓,已经与国内生产总值(GDP)增长脱钩。经济增长和能源强度分别是驱动和抑制粤港澳大湾区CO2排放增加的主要因素。能源生产和重工业对粤港澳大湾区CO2排放增长的推动作用降低,服务业正成为主要驱动力。粤港澳大湾区通过产业结构调整和升级实现低碳发展取得了显著成效。深圳和香港的产业升级以及深圳、广州和佛山的技术进步抑制了粤港澳大湾区CO2排放增长。粤港澳大湾区各城市异质性增加了减排指标分配难度和制定区域碳中和路线图的复杂性。本研究提出了粤港澳大湾区城市分级减排策略和碳达峰、碳中和建议,为制定粤港澳大湾区城市碳达峰和碳中和行动方案以及其他城市和地区的低碳发展提供了科学依据。

补充材料

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Guan D, Liu Z, Geng Y, Lindner S, Hubacek K. The gigatonne gap in China’s carbon dioxide inventories. Nat Clim Chang 2012;2(9):672‒5. 链接1

[ 2 ] Liu F, Liu C. Regional disparity, spatial spillover effects of urbanisation and carbon emissions in China. J Clean Prod 2019;241:118226. 链接1

[ 3 ] Li B, Haneklaus N. The role of renewable energy, fossil fuel consumption, urbanization and economic growth on CO2 emissions in China. Energy Rep 2021;7:783‒91. 链接1

[ 4 ] Liu J, Wang Q, Song Z, Fang F. Bottlenecks and countermeasures of high-penetration renewable energy development in China. Engineering 2020;7(11):1611‒22. 链接1

[ 5 ] RENEWABLES NOW 2021. Renewables 2021 global status report. Report. Paris: RENEWABLES NOW; 2021. 链接1

[ 6 ] United Nations General Assembly (UNGA). Address to the general debate of the 75th session of the United Nations general assembly. New York: Seventy-fifth United Nations General Assembly; 2020.

[ 7 ] Ministry of Ecology and Environment of the People´s Republic of China (MEE). Guidance on integrating and strengthening efforts related to climate change and ecological protection. Beijing: Ministry of Ecology and Environment of the People´s Republic of China; 2021. Chinese.

[ 8 ] The State Coucil of The People´s Republic of China (SC). Outline of Guangdong-Hong Kong-Macao Greater Bay area development plan. Beijing: The State Coucil of The People´s Republic of China; 2019. Chinese.

[ 9 ] National Bureau of Statistics of China. Guangdong statistical yearbook 2021. Beijing: China Statistical Press; 2021. Chinese.

[10] Project team of study on medium to long term scenario of energy transition in Guangdong. Study on medium to long term scenario of energy transition in Guangdong, Hong Kong and Macau Bay Area. Beijing: Science Press; 2020. Chinese.

[11] Wu M, Wu J, Zang C. A comprehensive evaluation of the eco-carrying capacity and green economy in the Guangdong-Hong Kong-Macao Greater Bay Area, China. J Clean Prod 2020;281:124945. 链接1

[12] Huang R, Lv G, Chen M, Zhu Z. CO2 emissions embodied in trade: evidence for Hong Kong SAR. J Clean Prod 2019;239:117918. 链接1

[13] Dong D, Duan H, Mao R, Song Q, Zuo J, Zhu J, et al. Towards a low carbon transition of urban public transport in megacities: a case study of Shenzhen, China. Resour Conserv Recycling 2018;134:149‒55. 链接1

[14] Xu Q, Dong Y, Yang R. Urbanization impact on carbon emissions in the Pearl River Delta region: kuznets curve relationships. J Clean Prod 2018;180:514‒23. 链接1

[15] Lin B, Li Z. Spatial analysis of mainland cities’ carbon emissions of and around Guangdong-Hong Kong-Macao Greater Bay Area. Sustain Cities Soc 2020;61:102299. 链接1

[16] Dou X, Deng Z, Sun T, Ke P, Zhu B, Shan Y, et al. Global and local carbon footprints of city of Hong Kong and Macao from 2000 to 2015. Resour Conserv Recycling 2021;164:105167. 链接1

[17] Qian Y, Zheng H, Meng J, Shan Y, Zhou Y, Guan D. Large inter-city inequality in consumption-based CO2 emissions for China’s Pearl River Basin cities. Resour Conserv Recycling 2022;176:105923. 链接1

[18] Liu X, Ou J, Chen Y, Wang S, Li X, Jiao L, et al. Scenario simulation of urban energy-related CO2 emissions by coupling the socioeconomic factors and spatial structures. Appl Energy 2019;238:1163‒78. 链接1

[19] Xie Z, Gao X, Yuan W, Fang J, Jiang Z. Decomposition and prediction of direct residential carbon emission indicators in Guangdong Province of China. Ecol Indic 2020;115:106344. 链接1

[20] Xu W, Xie Y, Xia D, Ji L, Huang G. A multi-sectoral decomposition and decoupling analysis of carbon emissions in Guangdong province, China. J Environ Manage 2021;298:113485. 链接1

[21] Zhang Y, Fu Z, Xie Y, Li Z, Liu Y, Hu Q, et al. Multi-objective programming for energy system based on the decomposition of carbon emission driving forces: a case study of Guangdong, China. J Clean Prod 2021;309:127410. 链接1

[22] Kennedy C, Ibrahim N, Hoornweg D. Low-carbon infrastructure strategies for cities. Nat Clim Chang 2014;4(5):343‒6. 链接1

[23] Shan Y, Fang S, Cai B, Zhou Y, Li D, Feng K, et al. Chinese cities exhibit varying degrees of decoupling of economic growth and CO2 emissions between 2005 and 2015. One Earth 2021;4(1):124‒34. 链接1

[24] Wang S, Liu X. China’s city-level energy-related CO2 emissions: spatiotemporal patterns and driving forces. Appl Energy 2017;200:204‒14. 链接1

[25] Du M, Zhang X, Xia L, Cao L, Zhang Z, Zhang L, et al. The China Carbon Watch (CCW) system: a rapid accounting of household carbon emissions in China at the provincial level. Renew Sustain Energy Rev 2022;155:111825. 链接1

[26] Shan Y, Guan D, Liu J, Mi Z, Liu Z, Liu J, et al. Methodology and applications of city level CO2 emission accounts in China. J Clean Prod 2017;161:1215‒25. 链接1

[27] Zhou Y, Shan Y, Liu G, Guan D. Emissions and low-carbon development in Guangdong-Hong Kong-Macao Greater Bay Area cities and their surroundings. Appl Energy 2018;228:1683‒92. 链接1

[28] Liu Z, Guan D, Wei W, Davis SJ, Ciais P, Bai J, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 2015;524:335‒8. 链接1

[29] Dong F, Yu B, Hadachin T, Dai Y, Wang Y, Zhang S, et al. Drivers of carbon emission intensity change in China. Resour Conserv Recycling 2018;129:187‒201. 链接1

[30] Wang M, Feng C. The impacts of technological gap and scale economy on the low-carbon development of China’s industries: an extended decomposition analysis. Technol Forecast Soc Change 2020;157:120050. 链接1

[31] Shahbaz M, Loganathan N, Muzaffar AT, Ahmed K, Ali Jabran M. How urbanization affects CO2 emissions in Malaysia? The application of STIRPAT model. Renew Sustain Energy Rev 2016;57:83‒93. 链接1

[32] Balsalobre-Lorente D, Shahbaz M, Roubaud D, Farhani S. How economic growth, renewable electricity and natural resources contribute to CO2 emissions? Energy Policy 2018;113:356‒67. 链接1

[33] Zhao L, Zhao T, Yuan R. Scenario simulations for the peak of provincial household CO2 emissions in China based on the STIRPAT model. Sci Total Environ 2021;809:151098. 链接1

[34] Meng F, Su B, Thomson E, Zhou D, Zhou P. Measuring China’s regional energy and carbon emission efficiency with DEA models: a survey. Appl Energy 2016;183:1‒21. 链接1

[35] Li Z, Qi L. Reflections on econometric modeling methodology. Soc Sci China 2010;182(2):69‒83. Chinese.

[36] Ang BW, Zhang FQ. A survey of index decomposition analysis in energy and environmental studies. Energy 2000;25(12):1149‒76. 链接1

[37] Wang Q, Hang Y, Su B, Zhou P. Contributions to sector-level carbon intensity change: an integrated decomposition analysis. Energy Econ 2018;70:12‒25. 链接1

[38] Pasurka Jr CA. Decomposing electric power plant emissions within a joint production framework. Energy Econ 2006;28(1):26‒43. 链接1

[39] Wang C. Decomposing energy productivity change: a distance function approach. Energy 2007;32(8):1326‒33. 链接1

[40] Zhou P, Ang BW. Decomposition of aggregate CO2 emissions: a production-theoretical approach. Energy Econ 2008;30(3):1054‒67. 链接1

[41] Li A, Zhang A, Zhou Y, Yao X. Decomposition analysis of factors affecting carbon dioxide emissions across provinces in China. J Clean Prod 2017;141:1428‒44. 链接1

[42] Zhang W, Tang X, Yang G, Zha D. Decomposition of CO2 emission intensity in Chinese MIs through a development mode extended LMDI method combined with a production-theoretical approach. Sci Total Environ 2020;702:134787. 链接1

[43] Zha D, Yang G, Wang Q. Investigating the driving factors of regional CO2 emissions in China using the IDA-PDA-MMI method. Energy Econ 2019;84:104521. 链接1

[44] Du K, Lin B. Understanding the rapid growth of China’s energy consumption: a comprehensive decomposition framework. Energy 2015;90:570‒7. 链接1

[45] Leontief WW. Quantitative input and output relations in the economic systems of the United States. Rev Econ Stat 1936;18(3):105‒25. 链接1

[46] Guan D, Hubacek K, Weber CL, Peters GP, Reiner DM. The drivers of Chinese CO2 emissions from 1980 to 2030. Glob Environ Change 2008;18(4):626‒34. 链接1

[47] Mi Z, Zheng J, Meng J, Shan Y, Zheng H, Ou J, et al. China’s energy consumption in the New Normal. Earths Futur 2018;6(7):1007‒16. 链接1

[48] Su B, Ang BW. Structural decomposition analysis applied to energy and emissions: some methodological developments. Energy Econ 2012;34(1):177‒88. 链接1

[49] Hoekstra R, van den Bergh JCJM. Comparing structural decomposition analysis and index. Energy Econ 2003;25(1):39‒64. 链接1

[50] Feng K, Davis SJ, Sun L, Hubacek K. Drivers of the US CO2 emissions 1997-2013. Nat Commun 2015;6(1):7714. 链接1

[51] Choi KH, Ang BW. Attribution of changes in Divisia real energy intensity index—an extension to index decomposition analysis. Energy Econ 2012;34(1):171‒6. 链接1

[52] Peters GP, Andrew RM, Canadell JG, Fuss S, Jackson RB, Korsbakken JI, et al. Key indicators to track current progress and future ambition of the Paris Agreement. Nat Clim Chang 2017;7:118‒22. 链接1

[53] Ang BW, Liu N. Handling zero values in the logarithmic mean Divisia index decomposition approach. Energy Policy 2007;35(1):238‒46. 链接1

[54] Ang BW. LMDI decomposition approach: a guide for implementation. Energy Policy 2015;86:233‒8. 链接1

[55] Jiang J, Ye B, Xie D, Tang J. Provincial-level carbon emission drivers and emission reduction strategies in China: combining multi-layer LMDI decomposition with hierarchical clustering. J Clean Prod 2017;169:178‒90. 链接1

[56] Ou JM, Meng J, Shan Y, Zheng H, Mi Z, Guan D. Initial Declines in China’s provincial energy consumption and their drivers. Joule 2019;3(5):1163‒8. 链接1

[57] Guan D, Meng J, Reiner DM, Zhang N, Shan Y, Mi Z, et al. Structural decline in China’s CO2 emissions through transitions in industry and energy systems. Nat Geosci 2018;11(8):551‒5. 链接1

[58] The Intergovernmental Panel on Climate Change (IPCC). IPCC guidelines for national greenhouse gas inventories. Report. Hayama, Japan: Institute for Global Environmental Strategies; 2006.

[59] Peters G, Weber C, Liu J. Construction of Chinese energy and emissions inventory. Report. Trondheim, Norway: Norwegian University of Science and Technology (NTNU); 2006. Report No.:4/2006

[60] Li L, Shan Y, Lei Y, Wu S, Yu X, Lin X, et al. Decoupling of economic growth and emissions in China’s cities: a case study of the Central Plains urban agglomeration. Appl Energy 2019;244:36‒45. 链接1

[61] Li K, Zhou Y, Xiao H, Li Z, Shan Y. Decoupling of economic growth from CO2 emissions in Yangtze River Economic Belt cities. Sci Total Environ 2021;775:145927. 链接1

[62] Xiao H, Duan Z, Zhou Y, Zhang N, Shan Y, Lin X, et al. CO2 emission patterns in shrinking and growing cities: a case study of Northeast China and the Yangtze River Delta. Appl Energy 2019;251:113384. 链接1

[63] Mousavi B, Lopez NSA, Biona JBM, Chiu ASF, Blesl M. Driving forces of Iran’s CO2 emissions from energy consumption: an LMDI decomposition approach. Appl Energy 2017;206:804‒14. 链接1

[64] Le Quéré C, Korsbakken JI, Wilson C, Tosun J, Andrew R, Andres RJ, et al. Drivers of declining CO2 emissions in 18 developed economies. Nat Clim Chang 2019;9(3):213‒7. 链接1

[65] Long Y, Yoshida Y, Liu Q, Guan D, Zheng H, Li Y, et al. Japanese carbon emissions patterns shifted following the 2008 financial crisis and the 2011 Tohoku earthquake. Communications Earth & Environment 2021;2(1):125. 链接1

[66] Guan Y, Shan Y, Huang Q, Chen H, Wang D, Hubacek K. Assessment to China’s recent emission pattern shifts. Earths Futur 2021;9(11): e2021EF002241. 链接1

[67] US Energy Information Administration (EIA). State energy-related CO2 emission data tables. Washington, DC: US Energy Information Administration; 2021.

[68] The State Coucil of The People´s Republic of China. China: 12th five-year plan (2011-2015) for national economic and social development. Beijing: The State Coucil of The People´s Republic of China; 2011.

[69] National Development and Reform Commission (NDRC). The 12th five-year plan for energy development. Beijing: National Development and Reform Commission; 2011. Chinese.

[70] People´s Government of Guangdong Province (PGGD). Notice on issuing the “Outline of the environmental protection plan for the Pearl River Delta (2004-2020). Guangzhou: People´s Government of Guangdong Province; 2005. Chinese.

[71] The State Coucil of The People´s Republic of China. Several opinions on speeding up the shutdown of small thermal power units. Beijing: The State Coucil of The People’s Republic of China; 2007. Chinese. http://www.ceads.net/. †† http://www.ceads.net/. 链接1

相关研究