期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第23卷 第4期 doi: 10.1016/j.eng.2022.03.021

具有聚集诱导发光活性的抗冻水凝胶用于低温环境下多级信息的加密和解密

Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China

# These authors contributed equally to this work.

收稿日期: 2021-10-09 修回日期: 2022-03-01 录用日期: 2022-03-31 发布日期: 2023-02-01

下一篇 上一篇

摘要

抗冻水凝胶可以在零下温度环境中调节内部水分子的冻结行为,从而保持其优异特性(如智能响应性和液体运输)以及拓展其在寒冷条件下的应用。本文开发了一系列具有聚集诱导发光(AIE)活性的抗冻水凝胶,可实现在零下温度的信息加密和解密。通过改变水凝胶内的甜菜碱含量,该水凝胶可呈现出不同的冻结温度(Tf)。当温度高于/低于Tf时,编码于水凝胶内的AIE荧光分子不发射/发射荧光,从而可以实现信息的加密和解密。此外,通过调控水凝胶的冻结程序或者在水凝胶内原位引入具有光热效应的硫化铜纳米颗粒并结合特定的照射条件,可以实现信息的多级加密和解密,从而增强信息的安全性。最后,由于解密的信息图案对温度波动具有不可逆性,因此该具有AIE活性的抗冻水凝胶可作为无需外界供能的防伪标签,用于实时和可视化监测冷冻运输(−80 ℃)过程中生物样本(如间充质干细胞和红细胞)的活性。

补充材料

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Teyssier J, Saenko SV, van der Marel D, Milinkovitch MC. Photonic crystals cause active colour change in chameleons. Nat Commun 2015;6(1):6368. 链接1

[ 2 ] Mäthger LM, Hanlon RT. Malleable skin coloration in cephalopods: selective reflectance, transmission and absorbance of light by chromatophores and iridophores. Cell Tissue Res 2007;329(1):179‒86. 链接1

[ 3 ] Mäthger LM, Denton EJ, Marshall NJ, Hanlon RT. Mechanisms and behavioural functions of structural coloration in cephalopods. J R Soc Interface 2009;6 (Suppl 2):S149‒63. 链接1

[ 4 ] Qin M, Sun M, Bai R, Mao Y, Qian X, Sikka D, et al. Bioinspired hydrogel interferometer for adaptive coloration and chemical sensing. Adv Mater 2018;30(21):1800468. 链接1

[ 5 ] Ji X, Wu RT, Long L, Ke XS, Guo C, Ghang YJ, et al. Encoding, reading, and transforming information using multifluorescent supramolecular polymeric hydrogels. Adv Mater 2018;30(11):1705480. 链接1

[ 6 ] Le X, Shang H, Yan H, Zhang J, Lu W, Liu M, et al. A urease-containing fluorescent hydrogel for transient information storage. Angew Chem Int Ed Engl 2021;60(7):3640‒6. 链接1

[ 7 ] Ding L, Wang XD. Luminescent oxygen-sensitive ink to produce highly secured anticounterfeiting labels by inkjet printing. J Am Chem Soc 2020;142(31):13558‒64. 链接1

[ 8 ] Qin L, Liu X, He K, Yu G, Yuan H, Xu M, et al. Geminate labels programmed by two-tone microdroplets combining structural and fluorescent color. Nat Commun 2021;12(1):699. 链接1

[ 9 ] Li Z, Chen H, Li B, Xie Y, Gong X, Liu X, et al. Photoresponsive luminescent polymeric hydrogels for reversible information encryption and decryption. Adv Sci 2019;6(21):1901529. 链接1

[10] Zhang Y, Le X, Jian Y, Lu W, Zhang J, Chen T. 3D fluorescent hydrogel origami for multistage data security protection. Adv Funct Mater 2019;29(46):1905514. 链接1

[11] Wang H, Ji X, Page ZA, Sessler JL. Fluorescent materials-based information storage. Mater Chem Front 2020;4(4):1024‒39. 链接1

[12] Hou Y, Li Z, Hou J, Shi P, Li Y, Niu M, et al. Conditional mechanochromic fluorescence with turn-on response: a new way to encrypt and decrypt binary data. Dyes Pigm 2018;159:252‒61. 链接1

[13] Zhang M, Li Y, Gao K, Li Z, Liu Y, Liao Y, et al. A turn-on mechanochromic luminescent material serving as pressure sensor and rewritable optical data storage. Dyes Pigm 2020;173:107928. 链接1

[14] Lu L, Wang K, Wu H, Qin A, Tang BZ. Simultaneously achieving high capacity storage and multilevel anti-counterfeiting using electrochromic and electrofluorochromic dual-functional AIE polymers. Chem Sci 2021;12(20):7058‒65. 链接1

[15] Wei S, Li Z, Lu W, Liu H, Zhang J, Chen T, et al. Multicolor fluorescent polymeric hydrogels. Angew Chem Int Ed Engl 2021;60(16):8608‒24. 链接1

[16] Ji X, Li Z, Liu X, Peng HQ, Song F, Qi J, et al. A functioning macroscopic “Rubik’s cube” assembled via controllable dynamic covalent interactions. Adv Mater 2019;31(40):1902365. 链接1

[17] Sun J, Wang J, Chen M, Pu X, Wang G, Li L, et al. Fluorescence turn-on visualization of microscopic processes for self-healing gels by AIEgens and anticounterfeiting application. Chem Mater 2019;31(15):5683‒90. 链接1

[18] Li Z, Ji X, Xie H, Tang BZ. Aggregation-induced emission-active gels: fabrications, functions, and applications. Adv Mater 2021;33(33):2100021. 链接1

[19] Bat E, Lin EW, Saxer S, Maynard HD. Morphing hydrogel patterns by thermoreversible fluorescence switching. Macromol Rapid Commun 2014;35(14):1260‒5. 链接1

[20] Yuk H, Lu B, Zhao X. Hydrogel bioelectronics. Chem Soc Rev 2019;48(6):1642‒67. 链接1

[21] Won P, Kim KK, Kim H, Park JJ, Ha I, Shin J, et al. Transparent soft actuators/ sensors and camouflage skins for imperceptible soft robotics. Adv Mater 2021;33(19):2002397. 链接1

[22] Wu S, Shi H, Lu W, Wei S, Shang H, Liu H, et al. Aggregation-induced emissive carbon dots gels for octopus-inspired shape/color synergistically adjustable actuator. Angew Chem Int Ed Engl 2021;60(40):21890‒8. 链接1

[23] Larson C, Peele B, Li S, Robinson S, Totaro M, Beccai L, et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 2016;351(6277):1071‒4. 链接1

[24] Ilami M, Bagheri H, Ahmed R, Skowronek EO, MaterialsMarvi H., actuators, and sensors for soft bioinspired robots. Adv Mater 2021;33(19):2003139. 链接1

[25] Zhu CN, Bai T, Wang H, Ling J, Huang F, Hong W, et al. Dual-encryption in a shape-memory hydrogel with tunable fluorescence and reconfigurable architecture. Adv Mater 2021;33(29):2102023. 链接1

[26] Le X, Shang H, Wu S, Zhang J, Liu M, Zheng Y, et al. Heterogeneous fluorescent organohydrogel enables dynamic anti-counterfeiting. Adv Funct Mater 2021;31(52):2108365. 链接1

[27] Le X, Shang H, Gu S, Yin G, Shan F, Li D, et al. Fluorescent organohydrogel with thermal-induced color change for anti-counterfeiting. Chin J Chem 2022;40(3):337‒42. 链接1

[28] Qiu H, Wei S, Liu H, Zhan B, Yan H, Lu W, et al. Programming multistate aggregation-induced emissive polymeric hydrogel into 3D structures for ondemand information decryption and transmission. Adv Intell Syst 2021;3(6):2000239. 链接1

[29] Choi S, Eom Y, Kim SM, Jeong DW, Han J, Koo JM, et al. A self-healing nanofiberbased self-responsive time-temperature indicator for securing a cold-supply chain. Adv Mater 2020;32(11):1907064. 链接1

[30] Giwa S, Lewis JK, Alvarez L, Langer R, Roth AE, Church GM, et al. The promise of organ and tissue preservation to transform medicine. Nat Biotechnol 2017;35(6):530‒42. 链接1

[31] Chang T, Zhao G. Ice inhibition for cryopreservation: materials, strategies, and challenges. Adv Sci 2021;8(6):2002425. 链接1

[32] Rong Q, Lei W, Huang J, Liu M. Low temperature tolerant organohydrogel electrolytes for flexible solid-state supercapacitors. Adv Energy Mater 2018;8(31):1801967. 链接1

[33] Zhang XF, Ma X, Hou T, Guo K, Yin J, Wang Z, et al. Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels. Angew Chem Int Ed Engl 2019;58(22):7366‒70. 链接1

[34] Jian Y, Handschuh-Wang S, Zhang J, Lu W, Zhou X, Chen T. Biomimetic antifreezing polymeric hydrogels: keeping soft-wet materials active in cold environments. Mater Horiz 2021;8(2):351‒69. Correction in: Mater Horiz 2020;7(12):3339. 链接1

[35] Zhou D, Chen F, Handschuh-Wang S, Gan T, Zhou X, Zhou X. Biomimetic extreme-temperature- and environment-adaptable hydrogels. ChemPhysChem 2019;20(17):2139‒54. 链接1

[36] Chen F, Zhou D, Wang J, Li T, Zhou X, Gan T, et al. Rational fabrication of antifreezing, non-drying tough organohydrogels by one-pot solvent displacement. Angew Chem Int Ed Engl 2018;57(22):6568‒71. 链接1

[37] Morelle XP, Illeperuma WR, Tian K, Bai R, Suo Z, Vlassak JJ. Highly stretchable and tough hydrogels below water freezing temperature. Adv Mater 2018;30(35):1801541. 链接1

[38] Sui X, Guo H, Chen P, Zhu Y, Wen C, Gao Y, et al. Zwitterionic osmolyte-based hydrogels with antifreezing property, high conductivity, and stable flexibility at subzero temperature. Adv Funct Mater 2020;30(7):1907986. 链接1

[39] Zhang D, Liu Y, Liu Y, Peng Y, Tang Y, Xiong L, et al. A general crosslinker strategy to realize intrinsic frozen resistance of hydrogels. Adv Mater 2021;33(42):2104006. 链接1

[40] Rong Q, Lei W, Chen L, Yin Y, Zhou J, Liu M. Anti-freezing, conductive selfhealing organohydrogels with stable strain-sensitivity at subzero temperatures. Angew Chem Int Ed Engl 2017;56(45):14159‒63. 链接1

[41] Han L, Liu K, Wang M, Wang K, Fang L, Chen H, et al. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance. Adv Funct Mater 2018;28(3):1704195. 链接1

[42] Zhang W, Wu B, Sun S, Wu P. Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nat Commun 2021;12(1):4082. 链接1

[43] Jian Y, Wu B, Le X, Liang Y, Zhang Y, Zhang D, et al. Antifreezing and stretchable organohydrogels as soft actuators. Research 2019;2019:2384347. 链接1

[44] Jin X, Song L, Yang H, Dai C, Xiao Y, Zhang X, et al. Stretchable supercapacitor at -30 ℃. Energy Environ Sci 2021;14(5):3075‒85. 链接1

[45] Pei Z, Yuan Z, Wang C, Zhao S, Fei J, Wei L, et al. A flexible rechargeable zinc‒air battery with excellent low-temperature adaptability. Angew Chem Int Ed Engl 2020;59(12):4793‒9. 链接1

[46] Hong Y, Lam JWY, Tang BZ. Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun 2009;29(29):4332‒53. 链接1

[47] Hong Y, Lam JWY, Tang BZ. Aggregation-induced emission. Chem Soc Rev 2011;40(11):5361‒88. 链接1

[48] Yang Y, Zhang S, Zhang X, Gao L, Wei Y, Ji Y. Detecting topology freezing transition temperature of vitrimers by AIE luminogens. Nat Commun 2019;10(1):3165. 链接1

[49] Yao H, Wang J, Fan YQ, Zhou Q, Guan XW, Kan XT, et al. Supramolecular hydrogel-based AIEgen: construction and dual-channel recognition of negative charged dyes. Dyes Pigm 2019;167:16‒21. 链接1

[50] He Z, Liu P, Zhang S, Yan J, Wang M, Cai Z, et al. A freezing-induced turn-on imaging modality for real-time monitoring of cancer cells in cryosurgery. Angew Chem Int Ed Engl 2019;58(12):3834‒7. 链接1

[51] Miyagawa A, Harada M, Fukuhara G, Okada T. Space size-dependent transformation of tetraphenylethylene carboxylate aggregates by ice confinement. J Phys Chem B 2020;124(11):2209‒17. 链接1

[52] An L, Wang X, Rui X, Lin J, Yang H, Tian Q, et al. The in situ sulfidation of Cu2O by endogenous H2S for colon cancer theranostics. Angew Chem Int Ed Engl 2018;57(48):15782‒6. 链接1

[53] Yang J, Pan C, Zhang J, Sui X, Zhu Y, Wen C, et al. Exploring the potential of biocompatible osmoprotectants as highly efficient cryoprotectants. ACS Appl Mater Interfaces 2017;9(49):42516‒24. 链接1

[54] Sui X, Wen C, Yang J, Guo H, Zhao W, Li Q, et al. Betaine combined with membrane stabilizers enables solvent-free whole blood cryopreservation and one-step cryoprotectant removal. ACS Biomater Sci Eng 2019;5(2):1083‒91. 链接1

[55] Nomura M, Muramoto Y, Yasuda S, Takabe T, Kishitani S. The accumulation of glycinebetaine during cold acclimation in early and late cultivars of barley. Euphytica 1995;83(3):247‒50. 链接1

[56] Kishitani S, Watanabe K, Yasuda S, Arakawa K, Takabe T. Accumulation of glycinebetaine during cold acclimation and freezing tolerance in leaves of winter and spring barley plants. Plant Cell Environ 1994;17(1):89‒95. 链接1

[57] Yang J, Sui X, Wen C, Pan C, Zhu Y, Zhang J, et al. A hemocompatible cryoprotectant inspired by freezing-tolerant plants. Colloids Surf B Biointerfaces 2019;176:106‒14. 链接1

[58] Shao Q, Jiang S. Molecular understanding and design of zwitterionic materials. Adv Mater 2015;27(1):15‒26. 链接1

[59] Kiani H, Sun DW. Water crystallization and its importance to freezing of foods: a review. Trends Food Sci Technol 2011;22(8):407‒26. 链接1

[60] Song G, Zhang L, He C, Fang DC, Whitten PG, Wang H. Facile fabrication of tough hydrogels physically cross-linked by strong cooperative hydrogen bonding. Macromolecules 2013;46(18):7423‒35. 链接1

[61] Fang F, Xiao W, Tian Z. Challenges of NK cell-based immunotherapy in the new era. Front Med 2018;12(4):440‒50. 链接1

[62] Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discov 2020;19(3):200‒18. 链接1

[63] Labanieh L, Majzner RG, Mackall CL. Programming CAR-T cells to kill cancer. Nat Biomed Eng 2018;2(6):377‒91. 链接1

[64] Tewary M, Shakiba N, Zandstra PW. Stem cell bioengineering: building from stem cell biology. Nat Rev Genet 2018;19(10):595‒614. 链接1

[65] He W. Cell therapy: pharmacological intervention enters a third era. Engineering 2019;5(1):5‒9. 链接1

[66] Lu L, Tian Z, Wang X. Cell therapy: a new era of disease intervention. Engineering 2019;5(1):3‒4. 链接1

[67] Chen J, Hu C, Chen L, Tang L, Zhu Y, Xu X, et al. Clinical study of mesenchymal stem cell treatment for acute respiratory distress syndrome induced by epidemic influenza A (H7N9) infection: a hint for COVID-19 treatment. Engineering 2020;6(10):1153‒61. 链接1

[68] Scudellari M. Cryopreservation aims to engineer novel ways to freeze, store, and thaw organs. Proc Natl Acad Sci USA 2017;114(50):13060‒2. 链接1

[69] Pogozhykh D, Pogozhykh O, Prokopyuk V, Kuleshova L, Goltsev A, Blasczyk R, et al. Influence of temperature fluctuations during cryopreservation on vital parameters, differentiation potential, and transgene expression of placental multipotent stromal cells. Stem Cell Res Ther 2017;8(1):66. 链接1

[70] Germann A, Oh YJ, Schmidt T, Schön U, Zimmermann H, von Briesen H. Temperature fluctuations during deep temperature cryopreservation reduce PBMC recovery, viability and T-cell function. Cryobiology 2013;67(2):193‒200. 链接1

[71] Huebinger J, Han HM, Hofnagel O, Vetter IR, Bastiaens PIH, Grabenbauer M. Direct measurement of water states in cryopreserved cells reveals tolerance toward ice crystallization. Biophys J 2016;110(4):840‒9. 链接1

相关研究