期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第23卷 第4期 doi: 10.1016/j.eng.2022.03.022

客体溶剂导向策略构筑异构金属有机框架材料实现二氧化碳和甲烷的动力学分离

a Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

b Institute of Zhejiang University–Quzhou, Quzhou 324000, China

# These authors contributed equally to this work.

收稿日期: 2021-08-24 修回日期: 2022-01-10 录用日期: 2022-03-20 发布日期: 2023-02-20

下一篇 上一篇

摘要

利用吸附分离技术实现二氧化碳和甲烷的分离是提高天然气品质的一种有效手段。然而,基于热力学分离的吸附剂对二氧化碳往往表现出很强的亲和力,因此再生过程会产生巨大的能耗。相较而言,尽管精准调控吸附剂孔径以实现吸附质扩散速率的显著差异仍具有巨大挑战,动力学分离技术仍是变压吸附(PSA)过程的首选。本文报道了一种用于在亚埃尺度精准调控吸附剂孔径的客体溶剂导向策略,实现了二氧化碳和甲烷的高效动力学分离。基于4,4-(六氟异丙基亚甲基)-双(苯甲酸)和双核铜的轮桨型结构单元,我们构筑了一系列异构的金属有机框架材料。结果表明,得益于周期性扩张和收缩的孔道以及理想的孔径尺寸,CuFMOF·CH3OH(CuFMOF-c)能够有效地捕获二氧化碳并阻碍甲烷的扩散,从而表现出优异的动力学分离性能,其具有极高的动力学选择性(273.5)和平衡-动力学综合选择性(64.2)。分子动力学(MD)模拟阐明了分离机制,固定床穿透实验验证了材料优异的分离性能。

补充材料

图片

图1

图2

图3

图4

参考文献

[ 1 ] Energy Information AdministrationUS. International energy outlook 2017. Washington, DC: US Energy Information Administration; 2017.

[ 2 ] Saha D, Grappe HA, Chakraborty A, Orkoulas G. Postextraction separation, onboard storage, and catalytic conversion of methane in natural gas: a review. Chem Rev 2016;116(19):11436‒99. 链接1

[ 3 ] Connolly BM, Aragones-Anglada M, Gandara-Loe J, Danaf NA, Lamb DC, Mehta JP, et al. Tuning porosity in macroscopic monolithic metal‒organic frameworks for exceptional natural gas storage. Nat Commun 2019; 10(1):2345. 链接1

[ 4 ] Chen FQ, Zhang ZG, Yang QW, Yang YW, Bao ZB, Ren QL. Microporous carbon adsorbents prepared by activating reagent-free pyrolysis for upgrading lowquality natural gas. ACS Sustain Chem Eng 2020;8(2):977‒85. 链接1

[ 5 ] Saleman TL, Li G, Rufford TE, Stanwix PL, Chan KI, Huang SH, et al. Capture of low grade methane from nitrogen gas using dual-reflux pressure swing adsorption. Chem Eng J 2015;281:739‒48. 链接1

[ 6 ] Chen FQ, Wang JW, Guo LD, Huang XL, Zhang ZG, Yang QW, et al. Carbon dioxide capture in gallate-based metal‒organic frameworks. Sep Purif Technol 2022;292:121031. 链接1

[ 7 ] Al-Amri A, Zahid U. Design modification of acid gas cleaning units for an enhanced performance in natural gas processing. Energy Fuels 2020;34(2):2545‒52. 链接1

[ 8 ] Lin RB, Li L, Alsalme A, Chen B. An ultramicroporous metal‍‒‍organic framework for sieving separation of carbon dioxide from methane. Small Struct 2020;1(3):2000022. 链接1

[ 9 ] Cui H, Ye Y, Liu T, Alothman ZA, Alduhaish O, Lin RB, et al. Isoreticular microporous metal‍‒‍organic frameworks for carbon dioxide capture. Inorg Chem 2020;59(23):17143‒8. 链接1

[10] Belmabkhout Y, Bhatt PM, Adil K, Pillai RS, Cadiau A, Shkurenko A, et al. Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity. Nat Energy 2018;3:1059‒66. Corrected in: Nat Energy 2019;4:83. 链接1

[11] Mao VY, Milner PJ, Lee JH, Forse AC, Kim EJ, Siegelman RL, et al. Cooperative carbon dioxide adsorption in alcoholamine- and alkoxyalkylaminefunctionalized metal‒organic frameworks. Angew Chem Int Ed Engl 2020;59 (44):19468‒77. 链接1

[12] Xiang S, He Y, Zhang Z, Wu H, Zhou W, Krishna R, et al. Microporous metal‒ organic framework with potential for carbon dioxide capture at ambient conditions. Nat Commun 2012;3(1):954. 链接1

[13] Li JR, Yu J, Lu W, Sun LB, Sculley J, Balbuena PB, et al. Porous materials with pre-designed single-molecule traps for CO2 selective adsorption. Nat Commun 2013;4(1):1538. 链接1

[14] Jahandar Lashaki M, Khiavi S, Sayari A. Stability of amine-functionalized CO2 adsorbents: a multifaceted puzzle. Chem Soc Rev 2019;48(12):3320‒405. 链接1

[15] Reynolds AJ, Verheyen TV, Adeloju SB, Meuleman E, Feron P. Towards commercial scale postcombustion capture of CO2 with monoethanolamine solvent: key considerations for solvent management and environmental impacts. Environ Sci Technol 2012;46(7):3643‒54. 链接1

[16] Dutcher B, Fan M, Russell AG. Amine-based CO2 capture technology development from the beginning of 2013—a review. ACS Appl Mater Interfaces 2015;7(4):2137‒48. 链接1

[17] Rochelle GT. Amine scrubbing for CO2 capture. Science 2009;325(5948):1652‒4. 链接1

[18] Siegelman RL, Milner PJ, Kim EJ, Weston SC, Long JR. Challenges and opportunities for adsorption-based CO2 capture from natural gas combined cycle emissions. Energy Environ Sci 2019;12(7):2161‒73. 链接1

[19] Chen F, Ding J, Guo K, Yang L, Zhang Z, Yang Q, et al. CoNi alloy nanoparticles embedded in metal‒organic framework-derived carbon for the highly efficient separation of xenon and krypton via a charge-transfer effect. Angew Chem Int Ed Engl 2021;60(5):2431‒8. 链接1

[20] Chen F, Lai D, Guo L, Wang J, Zhang P, Wu K, et al. Deep desulfurization with record SO2 adsorption on the metal‒organic frameworks. J Am Chem Soc 2021;143(24):9040‒7. 链接1

[21] Godfrey HGW, da Silva I, Briggs L, Carter JH, Morris CG, Savage M, et al. Ammonia storage by reversible host‒guest site exchange in a robust metal‒ organic framework. Angew Chem Int Ed Engl 2018;57(45):14778‒81. 链接1

[22] Zhang L, Li L, Hu E, Yang L, Shao K, Yao L, et al. Boosting ethylene/ethane separation within copper(I)-chelated metal‒organic frameworks through tailor-made aperture and specific π-complexation. Adv Sci 2020;7 (2):1901918. 链接1

[23] Wang Y, Jia X, Yang H, Wang Y, Chen X, Hong AN, et al. A strategy for constructing pore-space-partitioned MOFs with high uptake capacity for C2 hydrocarbons and CO2. Angew Chem Int Ed Engl 2020;59(43):19027‒30. 链接1

[24] Ye ZM, Zhang XW, Liao PQ, Xie Y, Xu YT, Zhang XF, et al. A hydrogen-bonded yet hydrophobic porous molecular crystal for molecular-sieving-like separation of butane and isobutane. Angew Chem Int Ed Engl 2020;59(51):23322‒8. 链接1

[25] Cui H, Xie Y, Ye Y, Shi Y, Liang B, Chen B. An ultramicroporous metal‒organic framework with record high selectivity for inverse CO2/C2H2 separation. Bull Chem Soc Jpn 2021;94(11):2698‒701. 链接1

[26] Kong XJ, Li JR. An overview of metal‒organic frameworks for green chemical engineering. Engineering 2021;7(8):1115‒39. 链接1

[27] Chen FQ, Huang XL, Guo KQ, Yang L, Sun HR, Xia W, et al. Molecular sieving of propylene from propane in metal‒organic framework-derived ultramicroporous carbon adsorbents. ACS Appl Mater Interfaces 2022;14(26):30443‒53. 链接1

[28] Chen FQ, Huang XL, Yang L, Zhang ZG, Yang QW, Yang YW, et al. Boosting xenon adsorption with record capacity in microporous carbon molecular sieves. Sci China Chem 2023;66:601‒10. 链接1

[29] Chen FQ, Guo KQ, Huang XL, Zhang ZG, Yang QW, Yang YW, et al. Extraction of propane and ethane from natural gas on ultramicroporous carbon adsorbent with record selectivity. Sci China Mater 2023;66:319‒26. 链接1

[30] Huang XL, Chen FQ, Sun HR, Xia W, Zhang ZG, Yang QW, et al. Separation of perfluorinated electron specialty gases on microporous carbon adsorbents with record selectivity. Sep Purif Technol 2022;292:121059. 链接1

[31] Rozyyev V, Yavuz CT. An all-purpose porous cleaner for acid gas removal and dehydration of natural gas. Chem 2017;3(5):719‒21. 链接1

[32] Dogan NA, Ozdemir E, Yavuz CT. Direct access to primary amines and particle morphology control in nanoporous CO2 sorbents. ChemSusChem 2017;10(10):2130‒4. 链接1

[33] Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal‒organic frameworks. Science 2013;341(6149):1230444. 链接1

[34] Mofarahi M, Gholipour F. Gas adsorption separation of CO2/CH4 system using zeolite 5A. Micropor Mesopor Mat 2014;200:1‒10. 链接1

[35] Jayaraman A, Chiao AS, Padin J, Yang RT, Munson CL. Kinetic separation of methane/carbon dioxide by molecular sieve carbons. Sep Sci Technol 2002;37(11):2505‒28. 链接1

[36] Cavenati S, Grande CA, Rodrigues AE. Upgrade of methane from landfill gas by pressure swing adsorption. Energy Fuels 2005;19(6):2545‒55. 链接1

[37] Mohamed AR, Mohammadi M, Darzi GN. Preparation of carbon molecular sieve from lignocellulosic biomass: a review. Renew Sustain Energy Rev 2010;14(6):1591‒9. 链接1

[38] Yamane Y, Tanaka H, Miyahara MT. In silico synthesis of carbon molecular sieves for high-performance air separation. Carbon 2019;141:626‒34. 链接1

[39] Cai J, Qi J, Yang C, Zhao X. Poly(vinylidene chloride)-based carbon with ultrahigh microporosity and outstanding performance for CH4 and H2 storage and CO2 capture. ACS Appl Mater Interfaces 2014;6(5):3703‒11. 链接1

[40] Ji Z, Wang HZ, Canossa S, Wuttke S, Yaghi OM. Pore chemistry of metal‒organic frameworks. Adv Funct Mater 2020;30(41):2000238. 链接1

[41] Dou Y, Zhang W, Kaiser A. Electrospinning of metal‒organic frameworks for energy and environmental applications. Adv Sci 2020;7(3):1902590. 链接1

[42] Liu W, Yin R, Xu X, Zhang L, Shi W, Cao X. Structural engineering of lowdimensional metal‍‒‍organic frameworks: synthesis, properties, and applications. Adv Sci 2019;6(12):1802373. 链接1

[43] Liu Y, Liu G, Zhang C, Qiu W, Yi S, Chernikova V, et al. Enhanced CO2/CH4 separation performance of a mixed matrix membrane based on tailored MOF-polymer formulations. Adv Sci 2018;5(9):1800982. 链接1

[44] Yilmaz G, Peh SB, Zhao D, Ho GW. Atomic- and molecular-level design of functional metal‍‒‍organic frameworks (MOFs) and derivatives for energy and environmental applications. Adv Sci 2019;6(21):1901129. 链接1

[45] Bao ZB, Chang GG, Xing HB, Krishna R, Ren QL, Chen BL. Potential of microporous metal‍‒‍organic frameworks for separation of hydrocarbon mixtures. Energy Environ Sci 2016;9(12):3612‒41. 链接1

[46] Feng L, Day GS, Wang KY, Yuan S, Zhou HC. Strategies for pore engineering in zirconium metal‒organic frameworks. Chem 2020;6(11):2902‒23. 链接1

[47] Li LB, Lin RB, Wang XQ, Zhou W, Jia LT, Li JP, et al. Kinetic separation of propylene over propane in a microporous metal‒organic framework. Chem Eng J 2018;354:977‒82. 链接1

[48] Ding Q, Zhang Z, Yu C, Zhang P, Wang J, Cui X, et al. Exploiting equilibriumkinetic synergetic effect for separation of ethylene and ethane in a microporous metal‒organic framework. Sci Adv 2020;6(15):eaaz4322. 链接1

[49] Krause S, Hosono N, Kitagawa S. Chemistry of soft porous crystals: structural dynamics and gas adsorption properties. Angew Chem Int Ed Engl 2020;59(36):15325‒41. 链接1

[50] Kundu T, Wahiduzzaman M, Shah BB, Maurin G, Zhao D. Solvent-induced control over breathing behavior in flexible metal‍‒‍organic frameworks for natural-gas delivery. Angew Chem Int Ed Engl 2019;58(24):8073‒7. 链接1

[51] Li YP, Wang Y, Xue YY, Li HP, Zhai QG, Li SN, et al. Ultramicroporous building units as a path to bi-microporous metal‒organic frameworks with high acetylene storage and separation performance. Angew Chem Int Ed Engl 2019;58(38):13590‒5. 链接1

[52] Lv XL, Feng L, Wang KY, Xie LH, He T, Wu W, et al. A series of mesoporous rareearth metal‒organic frameworks constructed from organic secondary building units. Angew Chem Int Ed Engl 2021;60(4):2053‒7. 链接1

[53] Li X, Wang J, Bai N, Zhang X, Han X, da Silva I, et al. Refinement of pore size at sub-angstrom precision in robust metal‒organic frameworks for separation of xylenes. Nat Commun 2020;11(1):4280. 链接1

[54] Chanut N, Ghoufi A, Coulet MV, Bourrelly S, Kuchta B, Maurin G, et al. Tailoring the separation properties of flexible metal‒organic frameworks using mechanical pressure. Nat Commun 2020;11(1):1216. 链接1

[55] Lee CY, Bae YS, Jeong NC, Farha OK, Sarjeant AA, Stern CL, et al. Kinetic separation of propene and propane in metal‒organic frameworks: controlling diffusion rates in plate-shaped crystals via tuning of pore apertures and crystallite aspect ratios. J Am Chem Soc 2011;133(14):5228‒31. 链接1

[56] Lyndon R, You WQ, Ma Y, Bacsa J, Gong YT, Stangland EE, et al. Tuning the structures of metal‒organic frameworks via a mixed-linker strategy for ethylene/ethane kinetic separation. Chem Mater 2020;32(9):3715‒22. 链接1

[57] Gu C, Hosono N, Zheng JJ, Sato Y, Kusaka S, Sakaki S, et al. Design and control of gas diffusion process in a nanoporous soft crystal. Science 2019;363(6425):387‒91. 链接1

[58] Pan L, Sander MB, Huang X, Li J, Smith M, Bittner E, et al. Microporous metal organic materials: promising candidates as sorbents for hydrogen storage. J Am Chem Soc 2004;126(5):1308‒9. 链接1

[59] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by fast computing machines. J Chem Phys 1953;21(6):1087‒92. 链接1

[60] Martin MG, Siepmann JI. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J Phys Chem B 1998;102(14):2569‒77. 链接1

[61] Harris JG, Yung KH. Carbon dioxide’s liquid‒vapor coexistence curve and critical properties as predicted by a simple molecular-model. J Phys Chem 1995;99(31):12021‒4. 链接1

[62] Rappe AK, Casewit CJ, Colwell KS, Goddard III WA, Skiff WM. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 1992;114(25):10024‒35. 链接1

[63] Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. San Diego: Academic Press; 2002. 链接1

[64] Saha D, Bao Z, Jia F, Deng S. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A. Environ Sci Technol 2010;44(5):1820‒6. 链接1

[65] Ruthven DM. Principles of adsorption and adsorption processes. New York City: Wiley-Interscience; 1984.

[66] Cavenati S, Grande CA, Rodrigues AE. Separation of CH4/CO2/N2 mixtures by layered pressure swing adsorption for upgrade of natural gas. Chem Eng Sci 2006;61(12):3893‒906. 链接1

[67] Bae YS, Lee CH. Sorption kinetics of eight gases on a carbon molecular sieve at elevated pressure. Carbon 2005;43(1):95‒107. 链接1

[68] Liu J, Liu Y, Kayrak Talay D, Calverley E, Brayden M, Martinez M. A new carbon molecular sieve for propylene/propane separations. Carbon 2015;85:201‒11. 链接1

[69] Watanabe T, Keskin S, Nair S, Sholl DS. Computational identification of a metal organic framework for high selectivity membrane-based CO2/CH4 separations: Cu(hfipbb)(H2hfipbb)0.5. Phys Chem Chem Phys 2009; 11(48):11389‒94. 链接1

相关研究