期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第14卷 第7期 doi: 10.1016/j.eng.2022.04.012

从全球城市视角解码水系统碳中和

a Division of Natural and Applied Sciences, Duke Kunshan University, 8 Duke Avenue, Kunshan 215316, China
b Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
c Waternet, Amsterdam 1096 AC, Netherlands
d Department of Water Management, Delft University of Technology, Delft 2628 CN, Netherlands

收稿日期: 2022-02-08 修回日期: 2022-04-19 录用日期: 2022-04-25 发布日期: 2022-05-24

下一篇 上一篇

摘要

当前,很多城市已做出碳中和承诺,城市水系统也可以为构建碳中和城市贡献力量。本研究采用多城市时序分析法,评估了阿姆斯特丹、墨尔本、纽约和东京等四个城市,在水系统温室气体(GHG)排放管理方 面的进展情况及经验教训。这些城市在水系统温室气体减排目标制定和排放情况报告方面,一直走在世界前列。尽管这些年来多次“反弹”,但相比十多年前,这4个城市水系统的温室气体排放量都有所下降,近三年平均减排量达到13%~32%。温室气体排放量下降归功于多种工程措施,如太阳能和小型水力发电、沼气定价、污泥消化、焚烧及曝气系统优化等。与此同时,这些城市认识到,在实现碳中和目标的道路上仍有众多挑战,包括动态变化的需水量和降雨量、碳密集型防洪和供水战略、满足新的空气和水质标准以及修正温室气体排放核算方法等。本研究也证实,水系统靠自身实现碳中和十分困难,必须扩大常规的系统边界,统筹外部的工程和非工程机会,携手其他行业共同构建碳中和城市。

补充材料

图片

图1

图2

图3

参考文献

[ 1 ] Wiedmann T, Chen G, Owen A, Lenzen M, Doust M, Barrett J, et al. Three-scope carbon emission inventories of global cities. J Ind Ecol 2021;‍25(3):735‒50. 链接1

[ 2 ] Our cities [Internet]. Washington: Carbon Neutral Cities Alliance; c2021 [cited 2022 Apr 16]. Available online: https://carbonneutralcities.org/cities/. 链接1

[ 3 ] Ballard S, Porro J, Trommsdorff C. The roadmap to a low-carbon urban water utility: an international guide to the WaCCliM approach. London: IWA Publishing; 2018. 链接1

[ 4 ] Liu G, Qu J, van Loosdrecht M. ‘Blue Route’ for combating climate change. Natl Sci Rev 2021;8(8):nwab099. 链接1

[ 5 ] Rothausen SGSA, Conway D. Greenhouse-gas emissions from energy use in the water sector. Nat Clim Chang 2011;1(4):210‒9. 链接1

[ 6 ] Chini CM, Excell LE, Stillwell AS. A review of energy-for-water data in energy‒water nexus publications. Environ Res Lett 2021;15(12):123011. 链接1

[ 7 ] Chisholm A. A blueprint for carbon emissions reductions in the UK water industry. Report. London: The Chartered Institution of Water and Environmental Management; 2013.

[ 8 ] Strazzabosco A, Kenway SJ, Lant PA. Solar PV adoption in wastewater treatment plants: a review of practice in California. J Environ Manage 2019;248:109337. 链接1

[ 9 ] Strazzabosco A, Kenway SJ, Conrad SA, Lant PA. Renewable electricity generation in the Australian water industry: lessons learned and challenges for the future. Renew Sustain Energy Rev 2021;147:111236. 链接1

[10] Cao Y, Pawłowski A. Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: brief overview and energy efficiency assessment. Renew Sustain Energy Rev 2012;16(3):1657‒65. 链接1

[11] Jacob R, Short M, Belusko M, Bruno F. Maximising renewable gas export opportunities at wastewater treatment plants through the integration of alternate energy generation and storage options. Sci Total Environ 2020;742:140580. 链接1

[12] McCarty PL, Bae J, Kim J. Domestic wastewater treatment as a net energy producer—can this be achieved? Environ Sci Technol 2011;45(17):7100‒6. 链接1

[13] Mo W, Zhang Q. Can municipal wastewater treatment systems be carbon neutral? J Environ Manage 2012;112:360‒7. 链接1

[14] Hao X, Li J, van Loosdrecht MCM, Jiang H, Liu R. Energy recovery from wastewater: heat over organics. Water Res 2019;161:74‒7. 链接1

[15] Gu Y, Li Y, Li X, Luo P, Wang H, Robinson ZP, et al. The feasibility and challenges of energy self-sufficient wastewater treatment plants. Appl Energy 2017;204:1463‒75. 链接1

[16] Law Y, Jacobsen GE, Smith AM, Yuan Z, Lant P. Fossil organic carbon in wastewater and its fate in treatment plants. Water Res 2013;47(14):5270‒81. 链接1

[17] Daelman MRJ, van Voorthuizen EM, van Dongen UGJM, Volcke EIP, van Loosdrecht MCM. Methane emission during municipal wastewater treatment. Water Res 2012;46(11):3657‒70. 链接1

[18] Law Y, Ye L, Pan Y, Yuan Z. Nitrous oxide emissions from wastewater treatment processes. Philos Trans R Soc Lond B Biol Sci 2012;‍367(1593):1265‒77. 链接1

[19] Wu L, Chen X, Wei W, Liu Y, Wang D, Ni BJ. A critical review on nitrous oxide production by ammonia-oxidizing Archaea. Environ Sci Technol 2020;54(15):9175‒90. 链接1

[20] Daelman MRJ, de Baets B, van Loosdrecht MCM, Volcke EIP. Influence of sampling strategies on the estimated nitrous oxide emission from wastewater treatment plants. Water Res 2013;47(9):3120‒30. 链接1

[21] Massara TM, Malamis S, Guisasola A, Baeza JA, Noutsopoulos C, Katsou E. A review on nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water. Sci Total Environ 2017;596‒597:106‒23.

[22] Chen X, Mielczarek AT, Habicht K, Andersen MH, Thornberg D, Sin G. Assessment of full-scale N2O emission characteristics and testing of control concepts in an activated sludge wastewater treatment plant with alternating aerobic and anoxic phases. Environ Sci Technol 2019;53(21):12485‒94. 链接1

[23] Wu L, Mao XQ, Zeng A. Carbon footprint accounting in support of city water supply infrastructure siting decision making: a case study in Ningbo. China J Clean Prod 2015;103:737‒46. 链接1

[24] Zhang Q, Nakatani J, Wang T, Chai C, Moriguchi Y. Hidden greenhouse gas emissions for water utilities in China’‍s cities. J Clean Prod 2017;162:665‒77. 链接1

[25] Lane JL, de Haas DW, Lant PA. The diverse environmental burden of city-scale urban water systems. Water Res 2015;81:398‒415. 链接1

[26] Larsen TA. CO2-neutral wastewater treatment plants or robust, climatefriendly wastewater management? A systems perspective. Water Res 2015;87:513‒21. 链接1

[27] Lam KL, van der Hoek JP. Low-carbon urban water systems: opportunities beyond water and wastewater utilities? Environ Sci Technol 2020;‍54(23):14854‒61. 链接1

[28] Zhou Y, Zhang B, Wang H, Bi J. Drops of energy: conserving urban water to reduce greenhouse gas emissions. Environ Sci Technol 2013;47(19):10753‒61. 链接1

[29] Lam KL, Kenway SJ, Lant PA. Energy use for water provision in cities. J Clean Prod 2017;143:699‒709. 链接1

[30] Chini CM, Stillwell AS. The state of U.S. urban water: data and the energy‍‒water nexus. Water Resour Res 2018;54(3):1796‒811. 链接1

[31] Venkatesh G, Chan A, Brattebø H. Understanding the water‍‒‍energy‍‒‍carbon nexus in urban water utilities: comparison of four city case studies and the relevant influencing factors. Energy 2014;75:153‒66. 链接1

[32] Mo W, Wang R, Zimmerman JB. Energy‒water nexus analysis of enhanced water supply scenarios: a regional comparison of Tampa Bay, Florida, and San Diego, California. Environ Sci Technol 2014;48(10):5883‒91. 链接1

[33] Nässén J. Determinants of greenhouse gas emissions from Swedish private consumption: time-series and cross-sectional analyses. Energy 2014;66:98‒106. 链接1

[34] Olivier JGJ, Peters JAHW. Trends in global CO2 and total greenhouse gas emissions: 2020 report. Report. The Hague: PBL Netherlands Environmental Assessment Agency; 2020.

[35] Van der Hoek JP, Mol S, Janse T, Klaversma E, Kappelhof J. Selection and prioritization of mitigation measures to realize climate neutral operation of a water cycle company. J Water Clim Chang 2016;7(1):29‒38. 链接1

[36] New Amsterdam climate—Amsterdam climate neutral roadmap 2050. Report. Amsterdam: Carbon Neutral Cities Alliance; 2020 Feb.

[37] Pathways to carbon-neutral NYC: modernize, reimagine, reach. Report. New York City: New York City Mayor’s Office of Sustainability; 2021 Feb.

[38] Climate Change Act 2017 [Internet]. Melbourne: Victoria State Government; 2017 Feb 23 [cited 2022 Apr 16]. Available online: https://www.climatechange.vic.gov.au/legislation/climate-change-act-2017. 链接1

[39] Lam KL, Lant PA, Kenway SJ. Energy implications of the millennium drought on urban water cycles in southeast Australian cities. Water Sci Technol Water Supply 2018;18(1):214‒21. 链接1

[40] Tokyo Metropolitan Government Bureau of Waterworks Five-Year Environmental Plan 2020‍‒‍2024. Tokyo: Tokyo Metropolitan Government Bureau of Waterworks; 2020. Japanese.

[41] Global warming prevention plan in sewerage business—Earth plan 2017. Tokyo: Tokyo Metropolitan Government Bureau of Sewerage; 2017. Japanese.

[42] World Business Council for Sustainable Development, World Resources Institute. The greenhouse gas protocol: a corporate accounting and reporting standard. Geneva: World Business Council for Sustainable Development; 2004.

[43] WaterMelbourne. Melbourne Water annual report 2019‍‒‍2020. Report. Melbourne: Melbourne Water; 2020.

[44] Cventure LLC, Pasion C, Oyenuga C, Gouin K. City of New York inventory of New York City’‍s greenhouse gas emissions. Report. New York: Mayor’‍s Office of Sustainability; 2017.

[45] reportEnvironmental 2017. Tokyo: Tokyo Metropolitan Government Bureau of Waterworks; 2017. Japanese.

[46] Our path to net zero [internet]. Melbourne: Melbourne Water; 2021 Nov 4[cited 2022 Apr 16]. Available online: https://www.‍melbournewater.‍com.‍au/water-data-and-education/environmental-issues/our-path-net-zero. 链接1

[47] Strazzabosco A, Kenway SJ, Lant PA. Quantification of renewable electricity generation in the Australian water industry. J Clean Prod 2020;254:120119. 链接1

[48] Heisei 22 Tokyo Metropolitan Government Bureau of Sewerage Environmental report. Report. Tokyo: Tokyo Metropolitan Government Bureau of Sewerage;2011. Japanese.

[49] Cost of carbon abatement in the Australian water industry. Report. Sydney:Water Services Association of Australia; 2012.

[50] Water Industry Act 1994 statements of obligations (emission reduction).Melbourne: Victoria State Government; 2018.

[51] Harrison JA, Deemer BR, Birchfield MK, O’Malley MT. Reservoir water-level drawdowns accelerate and amplify methane emission. Environ Sci Technol 2017;51(3):1267‒77. 链接1

[52] Motelica-Wagenaar AM, Pelsma TAHM, Moria L, Kosten S. The potential impact of measures taken by water authorities on greenhouse gas emissions. Proc IAHS 2020;382:635‒42. 链接1

[53] Van der Hoek JP, Mol S, Giorgi S, Ahmad JI, Liu G, Medema G. Energy recovery from the water cycle: thermal energy from drinking water. Energy 2018;162:977‒87. 链接1

[54] Shimizu Y, Toyosada K, Yoshitaka M, Sakaue K. Creation of carbon credits by water saving. Water 2012;4(3):533‒44. 链接1

[55] Beeftink M, Hofs B, Kramer O, Odegard I, van der Wal A. Carbon footprint of drinking water softening as determined by life cycle assessment. J Clean Prod 2021;278:123925. 链接1

[56] Kenway S, Conrad S, Jawad MP, Gledhill J, Bravo R, McCall J, et al. Opportunities and barriers for renewable and distributed energy resource development at drinking water and wastewater utilities. Denver: Water Research Foundation; 2019.

[57] Waternet research & innovation 2018 progress report. Report. Amsterdam: Waternet Innovatie; 2018.

[58] Hall MR, West J, Sherman B, Lane J, de Haas D. Long-term trends and opportunities for managing regional water supply and wastewater greenhouse gas emissions. Environ Sci Technol 2011;45(12):5434‒40. 链接1

[59] Australian urban water utilities. National performance report 2019‍‒‍20: urban water utilities, part A. Melbourne: Bureau of Meteorology; 2021.

[60] Zib III L, Byrne DM, Marston LT, Chini CM. Operational carbon footprint of the U.S. water and wastewater sector’s energy consumption. J Clean Prod 2021;321:128815. 链接1

[61] Yang G, Zhang G, Wang H. Current state of sludge production, management, treatment and disposal in China. Water Res 2015;78:60‒73. 链接1

[62] Lam KL, Stokes-Draut JR, Horvath A, Lane JL, Kenway SJ, Lant PA. Life-cycle energy impacts for adapting an urban water supply system to droughts. Water Res 2017;127:139‒49. 链接1

[63] Zhang Q, Smith K, Zhao X, Jin X, Wang S, Shen J, et al. Greenhouse gas emissions associated with urban water infrastructure: what we have learnt from China’s practice. Wiley Interdisc Rev: Water 2021;8(4): e1529. 链接1

[64] Application rule for memorandum on assessment of investment issues. Amsterdam: Government of Amsterdam; 2018. Dutch.

[65] Binks AN, Kenway SJ, Lant PA. The effect of water demand management in showers on household energy use. J Clean Prod 2017;157:177‒89. 链接1

相关研究