期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第18卷 第11期 doi: 10.1016/j.eng.2022.04.026

源于蛋清的新型分层轻质多孔碳用于高效微波吸收

National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150080, China

收稿日期: 2020-03-10 修回日期: 2021-05-21 录用日期: 2021-06-08 发布日期: 2022-09-27

下一篇 上一篇

摘要

鸡蛋羹是一种在餐桌上常见的菜肴,在冷冻干燥后可得到均匀的多孔结构。鸡蛋羹中的蛋白质提供了丰富的碳和氮元素,并且鸡蛋羹的独特微观结构和可调节的电学参数使它成为一种潜在的多孔碳前驱体。本文以蛋清作为原材料,氮原位掺杂的多孔碳(NPC)和碳酸钾改性的NPC(PNPC)是通过一个简单的凝胶和碳化过程制备得到的。多孔碳的独特形貌继承于蛋白质,包括纤维簇、蜂窝孔和布满沟槽的骨架。这些结构具有优异的阻抗匹配和高效的内部损耗性能,使得到的多孔碳成为优异的无需金属元素掺杂的轻质电磁波吸收材料。作为多孔碳的代表之一,PNPC10-700 具有包括纤维簇、蜂窝孔和多孔骨架的多重
结构。并且,PNPC10-700 具有最大反射损耗值(66.15 dB;厚度为3.77 mm)和一个宽达5.82 GHz的有效吸收频段(从12.18 GHz到18 GHz,厚度为2.5 mm),这远超大部分文献中报道的数值。因此蛋清(蛋白质)的凝胶和后续碳化的结合是一种用于设计多孔碳吸波材料微观形貌和电磁性能的新方法。

补充材料

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] Zhou X, Jia Z, Feng A, Kou J, Cao H, Liu X, et al. Construction of multiple electromagnetic loss mechanism for enhanced electromagnetic absorption performance of fish scale-derived biomass absorber. Compos Pt B Eng 2020;192:107980. 链接1

[ 2 ] Wang Y, Di X, Lu Z, Wu X. Rational construction of hierarchical Co@C@NPC nanocomposites derived from bimetallic hybrid ZIFs/biomass for boosting the microwave absorption. J Colloid Interface Sci 2021;589:462‒71. 链接1

[ 3 ] Yuan Y, Ding Y, Wang C, Xu F, Lin Z, Qin Y, et al. Multifunctional stiff carbon foam derived from bread. ACS Appl Mater Interfaces 2016;8(26):16852‒61. 链接1

[ 4 ] Zhou Y, Ren J, Yang Y, Zheng Q, Liao J, Xie F, et al. Biomass-derived nitrogen and oxygen co-doped hierarchical porous carbon for high performance symmetric supercapacitor. J Solid State Chem 2018;268:149‒58. 链接1

[ 5 ] Li F, Xia H, Ni QQ. Egg-white-derived magnetic carbon flakes with enhanced microwave absorption properties. Synth Met 2021;278:116827. 链接1

[ 6 ] Pan F, Liu Z, Deng B, Dong Y, Zhu X, Huang C, et al. Magnetic Fe3S4 LTMCs micro-flowers@ wax gourd aerogel-derived carbon hybrids as efficient and sustainable electromagnetic absorber. Carbon 2021;179:554‒65. 链接1

[ 7 ] Zhao Y, Hao L, Zhang X, Tan S, Li H, Zheng J, et al. A novel strategy in electromagnetic wave absorbing and shielding materials design: multi-responsive field effect. Small Sci 2022;2(2):2100077. 链接1

[ 8 ] Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J. Ultralight and highly compressible graphene aerogels. Adv Mater 2013;25(15):2219‒23. 链接1

[ 9 ] Sun H, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater 2013;25(18):2554‒60. 链接1

[10] Quan B, Gu W, Sheng J, Lv X, Mao Y, Liu L, et al. From intrinsic dielectric loss to geometry patterns: dual-principles strategy for ultrabroad band microwave absorption. Nano Res 2021;14(5):1495‒501. 链接1

[11] Liu Y, Luo J, Helleu C, Behr M, Ba H, Romero T, et al. Hierarchical porous carbon fibers/carbon nanofibers monolith from electrospinning/CVD processes as a high effective surface area support platform. J Mater Chem A 2017;5(5):2151‒62. 链接1

[12] An GH, Kim H, Ahn HJ. Surface functionalization of nitrogen-doped carbon derived from protein as anode material for lithium storage. Appl Surf Sci 2019;463:18‒26. 链接1

[13] Xiao X, Liu X, Chen F, Fang D, Zhang C, Xia L, et al. Highly anti-UV properties of silk fiber with uniform and conformal nanoscale TiO2 coatings via atomic layer deposition. ACS Appl Mater Interfaces 2015;7(38):21326‒33. 链接1

[14] Si Y, Fu Q, Wang X, Zhu J, Yu J, Sun G, et al. Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions. ACS Nano 2015;9(4):3791‒9. 链接1

[15] Inagaki M, Qiu J, Guo Q. Carbon foam: preparation and application. Carbon 2015;87:128‒52. 链接1

[16] Balci O, Polat EO, Kakenov N, Kocabas C. Graphene-enabled electrically switchable radar-absorbing surfaces. Nat Commun 2015;6:6628. Correction in: Nat Commun 2015;6:10000. 链接1

[17] Balci O, Kakenov N, Karademir E, Balci S, Cakmakyapan S, Polat EO, et al. Electrically switchable metadevices via graphene. Sci Adv 2018;4(1):eaao1749. 链接1

[18] Zhao H, Cheng Y, Liu W, Yang L, Zhang B, Wang LP, et al. Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett 2019;11(1):24. 链接1

[19] Song WL, Cao MS, Fan LZ, Lu MM, Li Y, Wang CY, et al. Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding. Carbon 2014;77:130‒42. 链接1

[20] Cheng Y, Seow JZY, Zhao H, Xu ZJ, Ji G. A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett 2020;12(1):125. 链接1

[21] Zhang M, Han C, Cao WQ, Cao MS, Yang HJ, Yuan J. A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett 2021;13(1):27. 链接1

[22] Liang X, Man Z, Quan B, Zheng J, Gu W, Zhang Z, et al. Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett 2020;12(1):102. 链接1

[23] Zhang M, Wang XX, Cao WQ, Yuan J, Cao MS. Electromagnetic functions of patterned 2D materials for micro‒nano devices covering GHz, THz, and optical frequency. Adv Opt Mater 2019;7(19):1900689. 链接1

[24] Yang M, Yuan Ye, Li Y, Sun X, Wang S, Liang L, et al. Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal‒organic-framework. Carbon 2020;161:517‒27. 链接1

[25] Cao WQ, Wang XX, Yuan J, Wang WZ, Cao MS. Temperature dependent microwave absorption of ultrathin graphene composites. J Mater Chem C 2015;3(38):10017‒22. 链接1

[26] Xu H, Yin X, Zhu M, Li M, Zhang H, Wei H, et al. Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption. Carbon 2019;142:346‒53. 链接1

[27] Zhao L, He R, Rim KT, Schiros T, Kim KS, Zhou H, et al. Visualizing individual nitrogen dopants in monolayer graphene. Science 2011;333(6045):999‒1003. 链接1

[28] Liu Y, Shi M, Yan C, Zhuo Q, Wu H, Wang L, et al. Inspired cheese-like biomass-derived carbon with plentiful heteroatoms for high performance energy storage. J Mater Sci Mater Electron 2019;30(7):6583‒92. 链接1

[29] Elkady OA, Abolkassem SA, Elsayed AH, Hussein WA, Hussein KFA. Microwave absorbing efficiency of Al matrix composite reinforced with nano-Ni/SiC particles. Results Phys 2019;12:687‒700. 链接1

[30] Quan L, Qin FX, Li YH, Estevez D, Fu GJ, Wang H, et al. Magnetic graphene enabled tunable microwave absorber via thermal control. Nanotechnology 2018;29(24):245706. 链接1

[31] Cheng Y, Li Z, Li Y, Dai S, Ji G, Zhao H, et al. Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption. Carbon 2018;127:643‒52. 链接1

[32] Zhou X, Jia Z, Feng A, Wang K, Liu X, Chen L, et al. Dependency of tunable electromagnetic wave absorption performance on morphology-controlled 3D porous carbon fabricated by biomass. Compos Commun 2020;21:100404. 链接1

[33] Liu W, Tan S, Yang Z, Ji G. Hollow graphite spheres embedded in porous amorphous carbon matrices as lightweight and low-frequency microwave absorbing material through modulating dielectric loss. Carbon 2018;138:143‒53. 链接1

[34] Wang L, Liang K, Deng L, Liu YN. Protein hydrogel networks: a unique approach to heteroatom self-doped hierarchically porous carbon structures as an efficient ORR electrocatalyst in both basic and acidic conditions. Appl Catal B 2019;246:89‒99. 链接1

[35] Job N, Théry A, Pirard R, Marien J, Kocon L, Rouzaud JN, et al. Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 2005;43(12):2481‒94. 链接1

[36] Yuan Y, Liu L, Yang M, Zhang T, Xu F, Lin Z, et al. Lightweight, thermally insulating and stiff carbon honeycomb-induced graphene composite foams with a horizontal laminated structure for electromagnetic interference shielding. Carbon 2017;123:223‒32. 链接1

[37] Orsini S, Duce C, Bonaduce I. Analytical pyrolysis of ovalbumin. J Anal Appl Pyrolysis 2018;130:62‒71. 链接1

[38] Zhao H, Cheng Y, Lv H, Ji G, Du Y. A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 2019;142:245‒53. 链接1

[39] Faraci G, La Rosa S, Pennisi AR, Margaritondo G. Na hyperoxidation states studied by core-level spectroscopy. Phys Rev B 1994;50(3):1965‒8. 链接1

[40] Yang Z, Li Z, Ning T, Zhang M, Yan Y, Zhang D, et al. Microwave dielectric properties of B and N co-doped SiC nanopowders prepared by combustion synthesis. J Alloys Compd 2019;777:1039‒43. 链接1

[41] Liu X, Chen Y, Cui X, Zeng M, Yu R, Wang GS. Flexible nanocomposites with enhanced microwave absorption properties based on Fe3O4/SiO2 nanorods and polyvinylidene fluoride. J Mater Chem A 2015;3(23):12197‒204. 链接1

[42] Hou T, Jia Z, Feng A, Zhou Z, Liu X, Lv H, et al. Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity. J Mater Sci Technol 2021;68:61‒9. 链接1

[43] Huang L, Li J, Wang Z, Li Y, He X, Yuan Y. Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane. Carbon 2019;143:507‒16. 链接1

[44] Guo Z, Ren P, Zhang F, Duan H, Chen Z, Jin Y, et al. Magnetic coupling N self-doped porous carbon derived from biomass with broad absorption bandwidth and high-efficiency microwave absorption. J Colloid Interface Sci 2022;610:1077‒87. 链接1

[45] Gu Y, Dai P, Zhang W, Su Z. Fe3O4 nanoparticles anchored on hierarchical porous carbon derived from egg white for efficient microwave absorption performance. Mater Lett 2021;304:130624. 链接1

[46] Lv H, Guo Y, Wu G, Ji G, Zhao Y, Xu ZJ. Interface polarization strategy to solve electromagnetic wave interference issue. ACS Appl Mater Interfaces 2017;9(6):5660‒8. 链接1

[47] Lv H, Yang Z, Ong SJH, Wei C, Liao H, Xi S, et al. A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv Funct Mater 2019;29(14):1900163. 链接1

[48] Wang X, Shu JC, He XM, Zhang M, Wang XX, Gao C, et al. Green approach to conductive PEDOT:PSS decorating magnetic-graphene to recover conductivity for highly efficient absorption. ACS Sustain Chem Eng 2018;6(11):14017‒25. 链接1

[49] Gao Z, Xu B, Ma M, Feng A, Zhang Y, Liu X, et al. Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4@C) and electromagnetic microwave absorption. Compos Pt B Eng 2019;179:107417. 链接1

[50] Wang Y, Di X, Wu X, Li X. MOF-derived nanoporous carbon/Co/Co3O4/CNTs/RGO composite with hierarchical structure as a high-efficiency electromagnetic wave absorber. J Alloys Compd 2020;846:156215. 链接1

[51] Lu B, Huang H, Dong XL, Zhang XF, Lei JP, Sun JP, et al. Influence of alloy components on electromagnetic characteristics of core/shell-type Fe‒Ni nanoparticles. J Appl Phys 2008;104(11):114313. 链接1

[52] Wen B, Cao M, Lu M, Cao W, Shi H, Liu J, et al. Reduced graphene oxides: lightweight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv Mater 2014;26(21):3484‒9. 链接1

[53] Cao MS, Wang XX, Zhang M, Shu JC, Cao WQ, Yang HJ, et al. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv Funct Mater 2019;29(25):1807398. 链接1

[54] Wang XX, Cao WQ, Cao MS, Yuan J. Assembling nano‒microarchitecture for electromagnetic absorbers and smart devices. Adv Mater 2020;32(36):2002112. 链接1

[55] Cao M, Wang X, Cao W, Fang X, Wen B, Yuan J. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 2018;14(29):1800987. 链接1

[56] Yin Y, Liu X, Wei X, Yu R, Shui J. Porous CNTs/Co composite derived from zeolitic imidazolate framework: a lightweight, ultrathin, and highly efficient electromagnetic wave absorber. ACS Appl Mater Interfaces 2016;8(50):34686‒98. 链接1

相关研究