期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第19卷 第12期 doi: 10.1016/j.eng.2022.04.027

水力空化反应器的最新进展——空化机理、反应器设计与应用

Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 3K7, Canada

收稿日期 :2021-03-18 修回日期 :2022-02-13 录用日期 : 2022-04-29 发布日期 :2022-10-20

下一篇 上一篇

摘要

Hydrodynamic cavitation is considered to be a promising technology for process intensification, due to its high energy efficiency, cost-effective operation, ability to induce chemical reactions, and scale-up possibilities. In the past decade, advancements have been made in the fundamental understanding of hydrodynamic cavitation and its main variables, which provide a basis for applications of hydrodynamic cavitation in radical-induced chemical reaction processes. Here, we provide an extensive review of these research efforts, including the fundamentals of hydrodynamic cavitation, the design of cavitation reactors, cavitation-induced reaction enhancement, and relevant industrial applications. Two types of hydrodynamic cavitation reactors—namely, stationary and rotational—are compared. The design parameters of a hydrodynamic cavitation reactor and reactor performance at the laboratory and pilot scales are discussed, and recommendations are made regarding optimal operation and geometric conditions. The commercial cavitation reactors that are currently on the market are reviewed here for the first time. The unique features of hydrodynamic cavitation have been widely applied to various chemical reactions, such as oxidization reactions and wastewater treatment, and to physical processes, such as emulsion generation and component extraction. The roles of radicals and gas bubble implosion are also thoroughly discussed.

相关研究