期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第24卷 第5期 doi: 10.1016/j.eng.2022.05.021

具有泵送控释性能的肠靶向Janus型双腔室海藻酸钙基微胶囊

a School of Chemical Engineering, Sichuan University, Chengdu 610065, China
b State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China

收稿日期: 2021-08-05 修回日期: 2022-03-28 录用日期: 2022-05-30 发布日期: 2023-03-01

下一篇 上一篇

摘要

本文成功开发了一种具有泵送控释特性的θ形双腔室肠靶向海藻酸钙基微胶囊,囊壁为海藻酸钙-壳聚糖/精蛋白/二氧化硅(ACPSi)复合壳,为封装的药物在胃环境中提供了良好保护,实现药物的肠靶向释放。该θ形微胶囊由含药室和助推室两个腔室组成:含药室负载疏水药物吲哚美辛,其囊壁内嵌肠溶性
羟丙甲基纤维素邻苯二甲酸酯(HPMCP)微球,作为“微阀门”(micro-valves);助推室包封助推剂聚丙烯酸(PAA),在肠液环境中,PAA发生溶胀,可提高吲哚美辛释放速率。结果显示,载药的θ-ACPSi 微胶囊在模拟胃液(pH值为2.5)中,吲哚美辛的释放率小于1%。然而,进入模拟肠液(pH值为6.8)时,含药室囊壁中的HPMCP微球溶解,释药“微通道”(microchannel)被打开,同时助推室中的PAA发生溶胀,为药物的释放提供推动力。结果,吲哚美辛在小肠中以恒定的速度释放60%以上。因此,该θ-ACPSi 微胶囊具有良好的泵送和肠靶向控释性能,为口服肠道靶向给药系统的开发提供了一种新策略。

补充材料

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

参考文献

[ 1 ] Yun Y, Cho YW, Park K. Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv Drug Deliv Rev 2013;65(6):822‒32. 链接1

[ 2 ] Daniell H, Mangu V, Yakubov B, Park J, Habibi P, Shi Y, et al. Investigational new drug enabling angiotensin oral-delivery studies to attenuate pulmonary hypertension. Biomaterials 2020;233:119750. 链接1

[ 3 ] Kim TH, Shin S, Bulitta JB, Youn YS, Yoo SD, Shin BS. Development of a physiologically relevant population pharmacokinetic in vitro‒in vivo correlation approach for designing extended-release oral dosage formulation. Mol Pharm 2017;14(1):53‒65. 链接1

[ 4 ] Banerjee A, Qi J, Gogoi R, Wong J, Mitragotri S. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J Control Release 2016;238:176‒85. 链接1

[ 5 ] Owens BMJ, Simmons A. Intestinal stromal cells in mucosal immunity and homeostasis. Mucosal Immunol 2013;6(2):224‒34. 链接1

[ 6 ] Alhnan MA, Murdan S, Basit AW. Encapsulation of poorly soluble basic drugs into enteric microparticles: a novel approach to enhance their oral bioavailability. Int J Pharm 2011;416(1):55‒60. 链接1

[ 7 ] Xu Y, Qu F, Wang Y, Lin H, Wu X, Jin Y. Construction of a novel pH-sensitive drug release system from mesoporous silica tablets coated with Eudragit. Solid State Sci 2011;13(3):641‒6. 链接1

[ 8 ] Shrestha N, Shahbazi MA, Araújo F, Zhang H, Mäkilä EM, Kauppila J, et al. Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers. Biomaterials 2014;35(25):7172‒9. 链接1

[ 9 ] Xu Y, Shrestha N, Préat V, Beloqui A. Overcoming the intestinal barrier: a look into targeting approaches for improved oral drug delivery systems. J Control Release 2020;322:486‒508. 链接1

[10] Mei L, He F, Zhou RQ, Wu CD, Liang R, Xie R, et al. Novel intestinal-targeted Ca-alginate-based carrier for pH-responsive protection and release of lactic acid bacteria. ACS Appl Mater Interfaces 2014;6(8):5962‒70. 链接1

[11] Philip AK, Philip B. Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Med J 2010;25(2):70‒8. 链接1

[12] Song SW, Hidajat K, Kawi S. pH-controllable drug release using hydrogel encapsulated mesoporous silica. Chem Commun 2007;42:4396‒8. 链接1

[13] Chen KH, Miao YB, Shang CY, Huang TY, Yu YT, Yeh CN, et al. A bubble bursting-mediated oral drug delivery system that enables concurrent delivery of lipophilic and hydrophilic chemotherapeutics for treating pancreatic tumors in rats. Biomaterials 2020;255:120157. 链接1

[14] Wei J, Ju XJ, Zou XY, Xie R, Wang W, Liu YM, et al. Multi-stimuli-responsive microcapsules for adjustable controlled-release. Adv Funct Mater 2014;24(22):3312‒23. 链接1

[15] He F, Mei L, Ju XJ, Xie R, Wang W, Liu Z, et al. pH-responsive controlled release characteristics of solutes with different molecular weights diffusing across membranes of Ca-alginate/protamine/silica hybrid capsules. J Membr Sci 2015;474:233‒43. 链接1

[16] Mei L, Xie R, Yang C, Ju XJ, Wang JY, Zhang Z, et al. Bio-inspired mini-eggs with pH-responsive membrane for enzyme immobilization. J Membr Sci 2013;429:313‒22. 链接1

[17] Wang JY, Jin Y, Xie R, Liu JY, Ju XJ, Meng T, et al. Novel calcium-alginate capsules with aqueous core and thermo-responsive membrane. J Colloid Interface Sci 2011;353(1):61‒8. 链接1

[18] Mei L, Xie R, Yang C, Ju XJ, Wang W, Wang JY, et al. pH-responsive Ca-alginate-based capsule membranes with grafted poly(methacrylic acid) brushes for controllable enzyme reaction. Chem Eng J 2013;232:573‒81. 链接1

[19] Ping Y, Guo J, Ejima H, Chen X, Richardson JJ, Sun H, et al. pH-responsive capsules engineered from metal‒phenolic networks for anticancer drug delivery. Small 2015;11(17):2032‒6. 链接1

[20] Chaudhary A, Tiwari N, Jain V, Singh R. Microporous bilayer osmotic tablet for colon-specific delivery. Eur J Pharm Biopharm 2011;78(1):134‒40. 链接1

[21] Herrlich S, Spieth S, Messner S, Zengerle R. Osmotic micropumps for drug delivery. Adv Drug Deliv Rev 2012;64(14):1617‒27. 链接1

[22] Huang Y, Zhang S, Shen H, Li J, Gao C. Controlled release of the nimodipine-loaded self-microemulsion osmotic pump capsules: development and characterization. AAPS PharmSciTech 2018;19(3):1308‒19. 链接1

[23] Liu H, Yang XG, Nie SF, Wei LL, Zhou LL, Liu H, et al. Chitosan-based controlled porosity osmotic pump for colon-specific delivery system: screening of formulation variables and in vitro investigation. Int J Pharm 2007;332(1‒2):115‒24.

[24] Liu L, Che B. Preparation of monolithic osmotic pump system by coating the indented core tablet. Eur J Pharm Biopharm 2006;64(2):180‒4. 链接1

[25] Ahmed K, Shoaib MH, Yousuf RI, Qazi F, Anwer S, Nasiri MI, et al. Use of Opadry® CA—a cellulose acetate/polyethylene glycol system for rate-controlled osmotic drug delivery of highly soluble antispastic agent Eperisone HCl. Adv Polym Technol 2018;37(8):2730‒42. 链接1

[26] Duan J, Chen Z, Liang X, Chen Y, Li H, Tian X, et al. Construction and application of therapeutic metal‒polyphenol capsule for peripheral artery disease. Biomaterials 2020;255:120199. 链接1

[27] Choi SW, Zhang Y, Xia Y. Fabrication of microbeads with a controllable hollow interior and porous wall using a capillary fluidic device. Adv Funct Mater 2009;19(18):2943‒3299. 链接1

[28] Lee S, Lee TY, Amstad E, Kim SH. Microfluidic production of capsules-in-capsules for programed release of multiple ingredients. Adv Mater Technol 2018;3(5):1800006. 链接1

[29] Wang W, Zhang MJ, Chu LY. Functional polymeric microparticles engineered from controllable microfluidic emulsions. Acc Chem Res 2014;47(2):373‒84. 链接1

[30] Dowling MB, Bagal AS, Raghavan SR. Self-destructing “mothership” capsules for timed release of encapsulated contents. Langmuir 2013;29(25):7993‒8. 链接1

[31] Esser-Kahn AP, Odom SA, Sottos NR, White SR, Moore JS. Triggered release from polymer capsules. Macromolecules 2011;44(14):5539‒53. 链接1

[32] He F, Zhang MJ, Wang W, Cai QW, Su YY, Liu Z, et al. Designable polymeric microparticles from droplet microfluidics for controlled drug release. Adv Mater Technol 2019;4(6):1800687. 链接1

[33] Zarket BC, Raghavan SR. Onion-like multilayered polymer capsules synthesized by a bioinspired inside-out technique. Nat Commun 2017;8(1):193. 链接1

[34] George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release 2006;114(1):1‒14. 链接1

[35] He F, Wang W, He XH, Yang XL, Li M, Xie R, et al. Controllable multicompartmental capsules with distinct cores and shells for synergistic release. ACS Appl Mater Interfaces 2016;8(13):8743‒54. 链接1

[36] Kamperman T, Trikalitis VD, KarperienM, Visser CW, Leijten J. Ultrahigh-throughput production of monodisperse and multifunctional Janus microparticles using in-air microfluidics. ACS Appl Mater Interfaces 2018;10(28):23433‒8. 链接1

[37] Visser CW, Kamperman T, Karbaat LP, Lohse D, Karperien M. In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials. Sci Adv 2018;4(1):eaao1175. 链接1

[38] Isıklan N, Küçükbalcı G. Synthesis and characterization of pH- and temperature-sensitive materials based on alginate and poly(N-isopropylacrylamide/acrylic acid) for drug delivery. Polym Bull 2016;73(5):1321‒42. 链接1

[39] Hwang HD, Moon JI, Choi JH, Kim HJ, Kim SD, Park JC. Effect of water drying conditions on the surface property and morphology of waterborne UV-curable coatings for engineered flooring. J Ind Eng Chem 2009;15(3):381‒7. 链接1

[40] Lee DW, Hwang SJ, Park JB, Park HJ. Preparation and release characteristics of polymer-coated and blended alginate microspheres. J Microencapsul 2003;20(2):179‒92. 链接1

[41] Sakai S, Ono T, Ijima H, Kawakami K. In vitro and in vivo evaluation of alginate/sol-gel synthesized aminopropyl-silicate/alginate membrane for bioartificial pancreas. Biomaterials 2002;23(21):4177‒83. 链接1

[42] Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 1988;29(8):1035‒41. 链接1

[43] Chu LY, Niitsuma T, Yamaguchi T, Nakao S. Thermoresponsive transport through porous membranes with grafted PNIPAM gates. AIChE J 2003;49(4):896‒909. 链接1

[44] Koç ML, Özdemir Ü, _Imren D. Response to comments on “Prediction of the pH and the temperature-dependent swelling behavior of Ca2+-alginate hydrogels by artificial neural networks”. Chem Eng Sci 2009;64(8):1908. 链接1

[45] Graff J, Brinch K, Madsen JL. Gastrointestinal mean transit times in young and middle-aged healthy subjects. Clin Physiol 2001;21(2):253‒9. 链接1

[46] Arimoto M, Fukumori Y, Fujiki J, Ichikawa H. Acrylic terpolymer microcapsules for colon-specific drug delivery: effect of molecular weight and solubility of microencapsulated drugs on their release behaviors. J Drug Deliv Sci Technol 2006;16(3):173‒81. 链接1

相关研究