期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第22卷 第3期 doi: 10.1016/j.eng.2022.06.023

从太赫兹成像到太赫兹无线通信

Department of Electrical Engineering and Electronics, The University of Liverpool, Liverpool L69 3GJ, UK

收稿日期: 2021-11-12 修回日期: 2022-04-11 录用日期: 2022-06-16 发布日期: 2022-09-15

下一篇 上一篇

摘要

太赫兹(THz)技术是公众熟知的一种强大的成像工具,该技术已经被应用于安全领域和医学扫描,生成了许多使用其他技术所无法获得的令人印象深刻的图像。随着5G移动网络的推出,对6G无线通信的研究正在升温。据预测,太赫兹技术将被用于6G和未来的无线通信。本文回顾了太赫兹技术是如何被应用于成像和无线通信的,然后介绍和确定了该领域的最新发展,最后检查和比较了这两种应用中的常见设备和问题。本文还讨论了将太赫兹成像与无线通信整合的可能性,提出并讨论了目前面临的挑战和未来前景。结果表明,太赫兹技术是未来成像和无线通信的一项关键使能技术。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

参考文献

[ 1 ] Tataria H, Shafi M, Molisch AF, Dohler M, Sjöland H, Tufvesson F. 6G wireless systems: vision, requirements, challenges, insights, and opportunities. Proc IEEE 2021;109(7):1166‒99. 链接1

[ 2 ] Hajiyat ZRM, Ismail A, Sali A, Hamidon MN. Antenna in 6G wireless communication system: specifications, challenges, and research directions. Optik 2021;231:166415. 链接1

[ 3 ] Nguyen DC, Ding M, Pathirana PN, Seneviratne A, Li J, Niyato D, et al. 6G Internet of Things: a comprehensive survey. IEEE Internet Things J 2022;9(1):359‒83. 链接1

[ 4 ] White paper on 6G vision and candidate technologies. Report. Beijing: IMT-2030 (6G) Promotion Group. 2021 Jun.

[ 5 ] Siegel PH. Terahertz technology. IEEE Trans Microw Theory Tech 2002;50(3):910‒28. 链接1

[ 6 ] Terahertz technology is set to enable higher performance in a wide range of applications [Internet]. San Jose:TeraSense; 2015 Aug 25 [cited 2022 Apr 11]. Available from: http://terasense.com/news/terahertz-technology/. 链接1

[ 7 ] Xie J, Ye W, Zhou L, Guo X, Zang X, Chen L, et al. A review on terahertz technologies accelerated by silicon photonics. Nanomaterials 2021;11(7):1646. 链接1

[ 8 ] Valušis G, Lisauskas A, Yuan H, Knap W, Roskos HG. Roadmap of terahertz imaging 2021. Sensors 2021;21(12):4092. 链接1

[ 9 ] Piesiewicz R, Kleine-Ostmann T, Krumbholz N, Mittleman D, Koch M, Schoebel J, et al. Short-range ultra-broadband terahertz communications: concepts and perspectives. IEEE Antennas Propag Mag 2007;49(6):24‒39. 链接1

[10] Federici J, Moeller L. Review of terahertz and subterahertz wireless communications. J Appl Phys 2010;107(11):6. 链接1

[11] Song HJ, Nagatsuma T. Present and future of terahertz communications. IEEE Trans Terahertz Sci Technol 2011;1(1):256‒63. 链接1

[12] Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research. J Infrared Millim Terahertz Waves 2011;32(2):143‒71. 链接1

[13] Kürner T, Priebe S. Towards THz communications-status in research, standardization and regulation. J Infrared Millim Terahertz Waves 2014;35(1):53‒62. 链接1

[14] Akyildiz IF, Jornet JM, Han C. Terahertz band: next frontier for wireless communications. Phys Commun 2014;12:16‒32. 链接1

[15] Petrov V, Pyattaev A, Moltchanov D, Koucheryvy Y. Terahertz band communications: applications, research challenges, and standardization activities. In: Proceedings of 8th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT); 2016 Oct 18‒20; Lisbon, Portugal; 2016. 链接1

[16] Nagatsuma T, Ducournau G, Renaud CC. Advances in terahertz communications accelerated by photonics. Nat Photonics 2016;10(6):371‒9. 链接1

[17] Chen Z, Ma X, Zhang B, Zhang Y, Niu Z, Kuang N, et al. A survey on terahertz communications. China Commun 2019;16(2):1‒35.

[18] Rappaport TS, Xing Y, Kanhere O, Ju S, Madanayake A, Mandal S, et al. Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond. IEEE Access 2019;7:78729‒57. 链接1

[19] Lemic F, Abadal S, Tavernier W, Stroobant P, Colle D, Alarcón E, et al. Survey on terahertz nanocommunication and networking: a top‒down perspective. IEEE J Sel Areas Commun 2021;39(6):1506‒43. 链接1

[20] Chaccour C, Soorki MN, Saad W, Bennis M, Popovski P, Debbah M. Seven defining features of terahertz (THz) wireless systems: a fellowship of communication and sensing. IEEE Commun Surv Tutor 2022;24(2):967‒93. 链接1

[21] Sarieddeen H, Saeed N, Al-Naffouri TY, Alouini MS. Next generation terahertz communications: a rendezvous of sensing, imaging, and localization. IEEE Commun Mag 2020;58(5):69‒75. 链接1

[22] Petrov V, Kurner T, Hosako I. IEEE 802.15.3d: first standardization efforts for sub-terahertz band communications toward 6G. IEEE Commun Mag 2020;58(11):28‒33. 链接1

[23] Huang Y. Antennas: from theory to practice. 2nd ed. London: Wiley; 2021.

[24] Chen Y, Li Y, Han C, Yu Z, Wang G. Channel measurement and ray-tracing-statistical hybrid modeling for low-terahertz indoor communications. IEEE Trans Wirel Commun 2021;20(12):8163‒76. 链接1

[25] Ma J, Shrestha R, Moeller L, Mittleman DM. Invited article: channel performance for indoor and outdoor terahertz wireless links. APL Photonics 2018;3(5):051601. 链接1

[26] Room-temperature THz-QCL source [Internet]. Hamamatsu: Hamamatsu Photonics; [cited 2022 Apr 11]. Available from: https://www.hamamatsu.com/eu/en/our-company/business-domain/central-research-laboratory/optical-materials/qcl.html. 链接1

[27] Booske JH, Dobbs RJ, Joye CD, Kory CL, Neil GR, Park GS, et al. Vacuum electronic high power terahertz sources. IEEE Trans Terahertz Sci Technol 2011;1(1):54‒75. 链接1

[28] Parker RK, Abrams RH, Danly BG, Levush B. Vacuum electronics. IEEE Trans Microw Theory Tech 2002;50(3):835‒45. 链接1

[29] Dobroiu A, Yamashita M, Ohshima YN, Morita Y, Otani C, Kawase K. Terahertz imaging system based on a backward-wave oscillator. Appl Opt 2004;43(30):5637‒46. 链接1

[30] Bhattacharjee S, Booske JH, Kory CL, van der Weide DW, Limbach S, Gallagher S, et al. Folded waveguide traveling-wave tube sources for terahertz radiation. IEEE Trans Plasma Sci 2004;32(3):1002‒14. 链接1

[31] Freund H, Neil G. Free-electron lasers: vacuum electronic generators of coherent radiation. Proc IEEE 1999;87(5):782‒803. 链接1

[32] Desmaris V, Rashid H, Pavolotsky A, DesignBelitsky V., simulations and optimization of micromachined Golay-cell based THz sensors operating at room temperature. Procedia Chem 2009;1(1):1175‒8. 链接1

[33] Müller R, Gutschwager B, Hollandt J, Kehrt M, Monte C, Müller R, et al. Characterization of a large-area pyroelectric detector from 300 GHz to 30 THz. J Infrared Millim Terahertz Waves 2015;36(7):654‒61. 链接1

[34] Hesler JL, Crowe TW. Responsivity and noise measurements of zero-bias Schottky diode detectors. In: Proceedings of 18th International Symposium on Space Terahertz Technology; 2007 Mar 21‒23; Pasadena, CA, USA; 2007. 链接1

[35] Han R, Zhang Y, Coquillat D, Videlier H, Knap W, Brown E, et al. A 280 GHz Schottky diode detector in 130 nm digital CMOS. IEEE J Solid State Circuits 2011;46(11):2602‒12. 链接1

[36] Daghestani N, Parow-Souchon K, Pardo D, Liu H, Brewster N, Frogley M, et al. Room temperature ultrafast InGaAs Schottky diode based detectors for terahertz spectroscopy. Infrared Phys Technol 2019;99:240‒7. 链接1

[37] Sun J, Sun YF, Wu DM, Cai Y, Qin H, Zhang BS. High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor. Appl Phys Lett 2012;100(1):013506. 链接1

[38] Bauer M, Venckevičius R, Kašalynas I, Boppel S, Mundt M, Minkevičius L, et al. Antenna-coupled field-effect transistors for multi-spectral terahertz imaging up to 4.25 THz. Opt Express 2014;22(16):19235‒41. 链接1

[39] Ryu MW, Lee JS, Kim KS, Park K, Yang JR, Han ST, et al. High-performance plasmonic THz detector based on asymmetric FET with vertically integrated antenna in CMOS technology. IEEE Trans Electron Devices 2016;63(4):1742‒8. 链接1

[40] Bauer M, Rämer A, Boppel S, Chevtchenko S, Lisauskas A, Heinrich W, et al. High-sensitivity wideband THz detectors based on GaN HEMTs with integrated bow-tie antennas. In: Proceedings of 10th European Microwave Integrated Circuits Conference (EuMIC); 2015 Sep 7‒8; Paris, France; 2015. 链接1

[41] Čibiraite˙ D, Bauer M, Rämer A, Chevtchenko S, Lisauskas A, Matukas J, et al. Enhanced performance of AlGaN/GaN HEMT-based THz detectors at room temperature and at low temperature. In: Proceedings of 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz); 2017 Aug 27‒Sep 1; Cancun, Mexico; 2017. 链接1

[42] Blin S, Nouvel P, Pénarier A, Hesler J. Terahertz heterodyne communication using GaAs field-effect transistor receiver. IEEE Electron Device Lett 2017;38(1):20‒3. 链接1

[43] Hartwick TS, Hodges DT, Barker DH, Foote FB. Far infrared imagery. Appl Opt 1976;15(8):1919‒22. 链接1

[44] Hu BB, Nuss MC. Imaging with terahertz waves. Opt Lett 1995;20(16):1716‒8. 链接1

[45] Ferguson B, Zhang XC. Materials for terahertz science and technology. Nat Mater 2002;1(1):26‒33. 链接1

[46] Chan WL, Deibel J, Mittleman DM. Imaging with terahertz radiation. Rep Prog Phys 2007;70(8):1325. 链接1

[47] Jansen C, Wietzke S, Peters O, Scheller M, Vieweg N, Salhi M, et al. Terahertz imaging: applications and perspectives. Appl Opt 2010;49(19):E48‒57. 链接1

[48] Mittleman DM. Twenty years of terahertz imaging. Opt Express 2018;26(8):9417‒31. 链接1

[49] Siebert KJ, Quast H, Leonhardt R, Löffler T, Thomson M, Bauer T, et al. Continuous-wave all-optoelectronic terahertz imaging. Appl Phys Lett 2002;80(16):3003‒5. 链接1

[50] Song H, Hwang S, An H, Song HJ, Song JI. Continuous-wave THz vector imaging system utilizing two-tone signal generation and self-mixing detection. Opt Express 2017;25(17):20718‒26. 链接1

[51] Smith PR, Auston DH, Nuss MC. Subpicosecond photoconducting dipole antennas. IEEE J Quantum Electron 1988;24(2):255‒60. 链接1

[52] Shen YC, Upadhya PC, Beere HE, Linfield EH. Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers. Appl Phys Lett 2004;85(2):164‒6. 链接1

[53] Shen YC, Taday PF. Development and application of terahertz pulsed imaging for nondestructive inspection of pharmaceutical tablet. IEEE J Sel Top Quantum Electron 2008;14(2):407‒15. 链接1

[54] Zeitler JA, Shen Y, Baker C, Taday PF, Pepper M, Rades T. Analysis of coating structures and interfaces in solid oral dosage forms by three dimensional terahertz pulsed imaging. J Pharm Sci 2007;96(2):330‒40. 链接1

[55] Ho L, Müller R, Römer M, Gordon KC, Heinämäkie J, Kleinebudde P, et al. Analysis of sustained-release tablet film coats using terahertz pulsed imaging. J Control Release 2007;119(3):253‒61. 链接1

[56] Yasui T, Yasuda T, Sawanaka K, Araki T. Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film. Appl Opt 2005;44(32):6849‒56. 链接1

[57] Su K, Shen Y, Zeitler JA. Terahertz sensor for non-contact thickness and quality measurement of automobile paints of varying complexity. IEEE Trans Terahertz Sci Technol 2014;4(4):432‒9. 链接1

[58] Tu W, Zhong S, Shen Y, Incecik A. Nondestructive testing of marine protective coatings using terahertz waves with stationary wavelet transform. Ocean Eng 2016;111:582‒92. 链接1

[59] Yu C, Fan S, Sun Y, Pickwell-MacPherson E. The potential of terahertz imaging for cancer diagnosis: a review of investigations to date. Quant Imaging Med Surg 2012;2(1):33‒45.

[60] Woodward RM, Cole BE, Wallace VP, Pye RJ, Arnone DD, Linfield EH, et al. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys Med Biol 2002;47(21):3853‒63. 链接1

[61] Woodward RM, Wallace VP, Pye RJ, Cole BE, Arnone DD, Linfield EH, et al. Terahertz pulse imaging of ex vivo basal cell carcinoma. J Invest Dermatol 2003;120(1):72‒8. 链接1

[62] Pickwell E, Cole BE, Fitzgerald AJ, Pepper M, Wallace VP. In vivo study of human skin using pulsed terahertz radiation. Phys Med Biol 2004;49(9):1595‒607. 链接1

[63] Wallace VP, Fitzgerald AJ, Pickwell E, Pye RJ, Taday PF, Flanagan N, et al. Terahertz pulsed spectroscopy of human basal cell carcinoma. Appl Spectrosc 2006;60(10):1127‒33. 链接1

[64] Fitzgerald AJ, Wallace VP, Jimenez-Linan M, Bobrow L, Pye RJ, Purushotham AD, et al. Terahertz pulsed imaging of human breast tumors. Radiology 2006;239(2):533‒40. 链接1

[65] Sim YC, Ahn KM, Park JY, Park CS, Son JH. Temperature-dependent terahertz imaging of excised oral malignant melanoma. IEEE Trans Terahertz Sci Technol 2013;3(4):368‒73. 链接1

[66] Wahaia F, Valusis G, Bernardo LM, Oliveira A, Macutkevic J, Kasalynas I, et al. Detection of colon and rectum cancers by terahertz techniques. In: Popp J, Drexler W, Tuchin VV, Matthews DL, editors. Biophotonics: photonic solutions for better health care II. Bellingham: SPIE; 2010. p. 536‒49. 链接1

[67] Oh SJ, Kim SH, Ji YB, Jeong K, Park Y, Yang J, et al. Study of freshly excised brain tissues using terahertz imaging. Biomed Opt Express 2014;5(8):2837‒42. 链接1

[68] Yamaguchi S, Fukushi Y, Kubota O, Itsuji T, Ouchi T, Yamamoto S. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy. Sci Rep 2016;6:30124. 链接1

[69] Brahm A, Kunz M, Riehemann S, Notni G, Tünnermann A. Volumetric spectral analysis of materials using terahertz-tomography techniques. Appl Phys B 2010;100(1):151‒8. 链接1

[70] Santos IP, van Doorn R, Caspers PJ, Bakker Schut TC, Barroso EM, Nijsten TEC, et al. Improving clinical diagnosis of early-stage cutaneous melanoma based on Raman spectroscopy. Br J Cancer 2018;119(11):1339‒46. 链接1

[71] Chen HT, Kersting R, Cho GC. Terahertz imaging with nanometer resolution. Appl Phys Lett 2003;83(15):3009‒11. 链接1

[72] Astley V, Mendis R, Mittleman DM. Characterization of terahertz field confinement at the end of a tapered metal wire waveguide. Appl Phys Lett 2009;95(3):031104. 链接1

[73] Mitrofanov O, Viti L, Dardanis E, Giordano MC, Ercolani D, Politano A, et al. Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging. Sci Rep 2017;7:44240. 链接1

[74] Okada K, Serita K, Cassar Q, Murakami H, MacGrogan G, Guillet JP, et al. Terahertz near-field microscopy of ductal carcinoma in situ (DCIS) of the breast. J Phys Photonics 2020;2(4):044008. 链接1

[75] Beck M, Plötzing T, Maussang K, Palomo J, Colombelli R, Sagnes I, et al. High-speed THz spectroscopic imaging at ten kilohertz pixel rate with amplitude and phase contrast. Opt Express 2019;27(8):10866‒72. 链接1

[76] Berry CW, Wang N, Hashemi MR, Unlu M, Jarrahi M. Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. Nat Commun 2013;4:1622. 链接1

[77] Yang SH, Hashemi MR, Berry CW, Jarrahi M. 7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes. IEEE Trans Terahertz Sci Technol 2014;4(5):575‒81. 链接1

[78] Jiang Z, Zhang XC. 2D measurement and spatio‒temporal coupling of few-cycle THz pulses. Opt Express 1999;5(11):243‒8. 链接1

[79] Ushakov A, Chizhov P, Bukin V, Savel’ev A, Garnov S. Broadband in-line terahertz 2D imaging: comparative study with time-of-flight, cross-correlation, and Fourier transform data processing. J Opt Soc Am 2018;35(5):1159‒64. 链接1

[80] Chan WL, Moravec ML, Baraniuk RG, Mittleman DM. Terahertz imaging with compressed sensing and phase retrieval. Opt Lett 2008;33(9):974‒6. 链接1

[81] Chan WL, Chen HT, Taylor AJ, Brener I, Cich MJ, Mittleman DM. A spatial light modulator for terahertz beams. Appl Phys Lett 2009;94(21):213511. 链接1

[82] Guerboukha H, Nallappan K, Skorobogatiy M. Exploiting k-space/frequency duality toward real-time terahertz imaging. Optica 2018;5(2):109‒16. 链接1

[83] Shen YC, Gan L, Stringer M, Burnett A, Tych K, Shen H, et al. Terahertz pulsed spectroscopic imaging using optimized binary masks. Appl Phys Lett 2009;95(23):231112. 链接1

[84] Watts CM, Shrekenhamer D, Montoya J, Lipworth G, Hunt J, Sleasman T, et al. Terahertz compressive imaging with metamaterial spatial light modulators. Nat Photonics 2014;8(8):605‒9. 链接1

[85] Verghese S, McIntosh KA, Calawa S, Dinatale WF, Duerr EK, Molvar KA. Generation and detection of coherent terahertz waves using two photomixers. Appl Phys Lett 1998;73(26):3824‒6. 链接1

[86] Matsuura S, Blake GA, Wyss RA, Pearson JC. A traveling-wave THz photomixer based on angle-tuned phase matching. Appl Phys Lett 1999;74(19):2872‒4. 链接1

[87] Baker C, Gregory I, Evans MJ, Tribe WR, Linfield EH, Missous M. All-optoelectronic terahertz system using low-temperature-grown InGaAs photomixers. Opt Express 2005;13(23):9639‒44. 链接1

[88] Safian R, Ghazi G, Mohammadian N. Review of photomixing continuous-wave terahertz systems and current application trends in terahertz domain. Opt Eng 2019;58(11):110901. 链接1

[89] Li B, Wang D, Rong L, Zhai C, Wang Y, Zhao J. Application of continuous-wave terahertz computed tomography for the analysis of chicken bone structure. Opt Eng 2018;57(2):023105. 链接1

[90] Deninger AJ, Roggenbuck A, Schindler S, Preu S. 2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers. J Infrared Millim Terahertz Waves 2015;36(3):269‒77. 链接1

[91] Appleby R, Anderton RN. Millimeter-wave and submillimeter-wave imaging for security and surveillance. Proc IEEE 2007;95(8):1683‒90. 链接1

[92] Knipper R, Brahm A, Heinz E, May T, Notni G, Meyer HG, et al. THz absorption in fabric and its impact on body scanning for security application. IEEE Trans Terahertz Sci Technol 2015;5(6):999‒1004. 链接1

[93] Kowalski M. Real-time concealed object detection and recognition in passive imaging at 250 GHz. Appl Opt 2019;58(12):3134‒40. 链接1

[94] Luukanen A, Grönberg L, Grönholm M, Lappalainen P, Leivo M, Rautiainen A, et al. Real-time passive terahertz imaging system for standoff concealed weapons imaging. In: Wikner DA, Luukanen AR, editors. Passive millimeter wave imaging technology XIII. Bellingham: SPIE; 2010. p. 24‒31. 链接1

[95] Hassel J, Dabironezare SO, Gandini E, Gröonberg L, Sipola H, Rautiainen A, et al. Dual-band submillimeter-wave kinetic inductance bolometers and an imaging system for contraband object detection. In: Wikner DA, Robertson DA, editors. Passive and active millimeter-wave imaging XXI. Bellingham: SPIE; 2018. 链接1

[96] Mehdi I, Siles JV, Lee C, Schlecht E. THz diode technology: status, prospects, and applications. Proc IEEE 2017;105(6):990‒1007. 链接1

[97] Petkie DT, Casto C, De Lucia FC, Murrill SR, Redman B, Espinola RL, et al. Active and passive imaging in the THz spectral region: phenomenology, dynamic range, modes, and illumination. J Opt Soc Am B 2008;25(9):1523‒31. 链接1

[98] thruvision.com [Internet]. Ashburn: thruvision; [cited 2022 Apr 11]. Available from: https://thruvision.com. 链接1

[99] Kasjoo SR, Mokhar MBM, Zakaria NF, Juhari NJ. A brief overview of detectors used for terahertz imaging systems. AIP Conf Proc 2020;2203:020020.

[100] Javadi E, But DB, Ikamas K, Zdanevičius J, Knap W, Lisauskas A. Sensitivity of field-effect transistor-based terahertz detectors. Sensors 2021;21(9):2909. 链接1

[101] Miyamoto T, Yamaguchi A, Mukai T. Terahertz imaging system with resonant tunneling diodes. Jpn J Appl Phys 2016;55(3):032201. 链接1

[102] Rowe S, Pascale E, Doyle S, Dunscombe C, Hargrave P, Papageorgio A, et al. A passive terahertz video camera based on lumped element kinetic inductance detectors. Rev Sci Instrum 2016;87(3):033105. 链接1

[103] Dill S, Peichl M, Schreiber E, Anglberger H. Improved characterization of scenes with a combination of mmw radar and radiometer information. In: Wikner DA, Robertson DA, editors. Passive and active millimeter-wave imaging XX. Bellingham: SPIE; 2017. 链接1

[104] Dolganova IN, Zaytsev KI, Metelkina AA, Yakovlev EV, Karasik VE, Yurchenko SO. Combined terahertz imaging system for enhanced imaging quality. Opt Quantum Electron 2016;48(6):325. 链接1

[105] Garcia-Rial F, Montesano D, Gómez I, Callejero C, Bazus F, Grajal J. Combining commercially available active and passive sensors into a millimeter-wave imager for concealed weapon detection. IEEE Trans Microw Theory Tech 2019;67(3):1167‒83. 链接1

[106] Koch-Dandolo CL, Filtenborg T, Fukunaga K, Skou-Hansen J, Jepsen PU. Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting. Appl Opt 2015;54(16):5123‒9. 链接1

[107] Adam AJL, Planken PCM, Meloni S, Dik J. Terahertz imaging of hidden paint layers on canvas. Opt Express 2009;17(5):3407‒16. 链接1

[108] Buron JD, Petersen DH, Bøggild P, Cooke DG, Hilke M, Sun J, et al. Graphene conductance uniformity mapping. Nano Lett 2012;12(10):5074‒81. 链接1

[109] Buron JD, Mackenzie DMA, Petersen DH, Pesquera A, Centeno A, Bøggild P, et al. Terahertz wafer-scale mobility mapping of graphene on insulating substrates without a gate. Opt Express 2015;23(24):30721‒9. 链接1

[110] Lin H, Burton OJ, Engelbrecht S, Tybussek KH, Fischer BM, Hofmann S. Through-substrate terahertz time-domain reflection spectroscopy for environmental graphene conductivity mapping. Appl Phys Lett 2020;116(2):021105. 链接1

[111] Whelan PR, Shen Q, Luo D, Wang M, Ruoff RS, Jepsen PU, et al. Reference-free THz-TDS conductivity analysis of thin conducting films. Opt Express 2020;28(20):28819‒30. 链接1

[112] Rao L. Realization of temperature measurement by passive terahertz imaging. In: Proceedings of 13th UK-Europe-China Workshop on Millimetre-Waves and Terahertz Technologies (UCMMT); 2020 Aug 29‒Sep 1; Tianjin, China; 2020. 链接1

[113] Ellrich F, Bauer M, Schreiner N, Keil A, Pfeiffer T, Klier J, et al. Terahertz quality inspection for automotive and aviation industries. J Infrared Millim Terahertz Waves 2020;41(4):470‒89. 链接1

[114] Dandolo CLK, Guillet JP, Ma X, Fauquet F, Roux M, Mounaix P. Terahertz frequency modulated continuous wave imaging advanced data processing for art painting analysis. Opt Express 2018;26(5):5358‒67. 链接1

[115] Jornet JM, Akyildiz IF. Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Trans Wirel Commun 2011;10(10):3211‒21. 链接1

[116] Shafie A, Yang N, Durrani S, Zhou X, Han C, Juntti M. Coverage analysis for 3D terahertz communication systems. IEEE J Sel Areas Commun 2021;39(6):1817‒32. 链接1

[117] Scalari G, Walther C, Fischer M, Amanti MI, Terazzi R, Hoyler N, et al. Recent progress on long wavelength quantum cascade lasers between 1‒2 THz. In: Proceedings of IEEE Lasers and Electro‒Optics Society Annual Meeting Conference Proceedings; 2007 Oct 21‒25; Lake Buena Vista, FL, USA; 2007. 链接1

[118] Nagatsuma T, Ito H, Ishibashi T. High-power RF photodiodes and their applications. Laser Photonics Rev 2009;3(1‒2):123‒37.

[119] Hayashi S, Ito A, Hitaka M, Fujita K. Room temperature, single-mode 1.0 THz semiconductor source based on long-wavelength infrared quantum-cascade laser. Appl Phys Express 2020;13(11):112001. 链接1

[120] Kleine-Ostmann T, Pierz K, Hein G, Dawson P, Koch M. Audio signal transmission over THz communication channel using semiconductor modulator. Electron Lett 2004;40(2):124‒6. 链接1

[121] Hirata A, Takahashi H, Kukutsu N, Kado Y, Ikegawa H, Nishikawa H, et al. Transmission trial of television broadcast materials using 120 GHz-band wireless link. NTT Tech Rev 2009;7(3):1‒6.

[122] Hirata A, Kosugi T, Takahashi H, Yamaguchi R, Nakajima F, Furuta T, et al. 120 GHz-band millimeter-wave photonic wireless link for 10 Gb/s data transmission. IEEE Trans Microw Theory Tech 2006;54(5):1937‒44. 链接1

[123] Hirata A, Takahashi H, Yamaguchi R, Kosugi T, Murata K, Nagatsuma T, et al. Transmission characteristics of 120 GHz-band wireless link using radio-on-fiber technologies. J Lightwave Technol 2008;26(15):2338‒44. 链接1

[124] Kosugi T, Tokumitsu M, Murata K, Enoki T, Takahashi H, Hirata A, et al. 120 GHz Tx/Rx waveguide modules for 10 Gbit/s wireless link system. In: Proceedings of IEEE Compound Semiconductor Integrated Circuit Symposium; 2006 Nov 12‒15; San Antonio, TX, USA; 2006. 链接1

[125] Yamaguchi R, Hirata A, Kosugi T, Takahashi H, Kukutsu N, Nagatsuma T, et al. 10 Gbit/s MMIC wireless link exceeding 800 meters. In: Proceedings of IEEE Radio and Wireless Symposium; 2008 Jan 22‒24; Orlando, FL, USA; 2008. 链接1

[126] Hirata A, Yamaguchi R, Kosugi T, Takahashi H, Murata K, Nagatsuma T, et al. 10 Gbit/s wireless link using InP HEMT MMICs for generating 120- GHz-band millimeter-wave signal. IEEE Trans Microw Theory Tech 2009;57(5):1102‒9. 链接1

[127] Song HJ, Ajito K, Hirata A, Wakatsuki A, Muramoto Y, Furuta T, et al. 8 Gbit/s wireless data transmission at 250 GHz. Electron Lett 2009;45(22):1121‒2. 链接1

[128] Kuo FM, Huang CB, Shi JW, Chen NW, Chuang HP, Bowers JE, et al. Remotely up-converted 20 Gbit/s error-free wireless on‒off-keying data transmission at W-band using an ultra-wideband photonic transmitter-mixer. IEEE Photonics J 2011;3(2):209‒19. 链接1

[129] Song HJ, Ajito K, Muramoto Y, Wakatsuki A, Nagatsuma T, Kukutsu N. 24 Gbit/s data transmission in 300 GHz band for future terahertz communications. Electron Lett 2012;48(15):953‒4. 链接1

[130] Yu X, Asif R, Piels M, Zibar D, Galili M, Morioka T, et al. 400 GHz wireless transmission of 60 Gb/s nyquist-QPSK signals using UTC-PD and heterodyne mixer. IEEE Trans Terahertz Sci Technol 2016;6(6):765‒70. 链接1

[131] Nagatsuma T, Horiguchi S, Minamikata Y, Yoshimizu Y, Hisatake S, Kuwano S, et al. Terahertz wireless communications based on photonics technologies. Opt Express 2013;21(20):23736‒47. 链接1

[132] Seeds AJ, Shams H, Fice MJ, Renaud CC. Terahertz photonics for wireless communications. J Lightwave Technol 2015;33(3):579‒87. 链接1

[133] Rodriguez-Vazquez P, Grzyb J, Heinemann B, Pfeiffer UR. A QPSK 110 Gb/s polarization-diversityMIMO wireless link with a 220‒255 GHz tunable LO in a SiGe HBT technology. IEEE Trans Microw Theory Tech 2020;68(9):3834‒51. 链接1

[134] Koenig S, Boes F, Lopez-Diaz D, Antes J, Henneberger R, Schmogrow R, et al. 100 Gbit/s wireless link with mm-wave photonics. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013; 2013 Mar 17‒21; Anaheim, CA, USA; 2013. 链接1

[135] Antes J, Koenig S, Lopez-Diaz D, Boes F, Tessmann A, Henneberger H, et al. Transmission of an 8-PSK modulated 30 Gbit/s signal using an MMIC-based 240 GHz wireless link. In: Proceedings of IEEE MTT-S International Microwave Symposium Digest (MTT); 2013 Jun 2‒7; Seattle, WA, USA; 2013. 链接1

[136] Ducournau G, Szriftgiser P, Beck A, Bacquet D, Pavanello F, Peytavit E, et al. Ultrawide-bandwidth single-channel 0.4 THz wireless link combining broadband quasi-optic photomixer and coherent detection. IEEE Trans Terahertz Sci Technol 2014;4(3):328‒37. 链接1

[137] Ducournau G, Szriftgiser P, Bacquet D, Beck A, Akalin T, Peytavit E, et al. Optically power supplied Gbit/s wireless hotspot using 1.55 lm THz photomixer and heterodyne detection at 200 GHz. Electron Lett 2010;46(19):1349‒51. 链接1

[138] Lee M, Wanke MC. Searching for a solid-state terahertz technology. Science 2007;316(5821):64‒5. 链接1

[139] Takahashi H, Kosugi T, Hirata A, Murata K, Kukutsu N. 10 Gbit/s BPSK modulator and demodulator for a 120 GHz-band wireless link. IEEE Trans Microw Theory Tech 2011;59(5):1361‒8. 链接1

[140] Takahashi H, Kosugi T, Hirata A, Takeuchi J, Murata K, Kukutsu N. 120 GHz-band fully integrated wireless link using QPSK for realtime 10 Gbit/s transmission. IEEE Trans Microw Theory Tech 2013;61(12):4745‒53. 链接1

[141] Koenig S, Lopez-Diaz D, Antes J, Boes F, Henneberger H, Leuther A, et al. Wireless sub-THz communication system with high data rate. Nat Photonics 2013;7(12):977‒81. 链接1

[142] Boes F, Messinger T, Antes J, Meier D, Tessmann A, Inam A, et al. Ultra-broadband MMIC-based wireless link at 240 GHz enabled by 64GS/s DAC. In: Proceedings of IEEE 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz); 2014 Sep 14‒19; Tucson, AZ, USA; 2014. 链接1

[143] Hamada H, Fujimura T, Abdo I, Okada K, Song HJ, Sugiyama H, et al. 300-GHz 100-Gb/s InP-HEMT wireless transceiver using a 300 GHz fundamental mixer. In: Proceedings of IEEE/MTT-S International Microwave Symposium—IMS; 2018 Jun 10‒15; Philadelphia, PA, USA; 2018. 链接1

[144] Fritsche D, Stärke P, Carta C, Ellinger F. A low-power SiGe BiCMOS 190 GHz transceiver chipset with demonstrated data rates up to 50 Gbit/s using on-chip antennas. IEEE Trans Microw Theory Tech 2017;65(9):3312‒23. 链接1

[145] Hara S, Katayama K, Takano K, Dong R, Watanabe I, Sekine N, et al. A 32 Gbit/s 16AQM CMOS receiver in 300 GHz band. In: Proceedings of IEEE MTT-S International Microwave Symposium (IMS); 2017 Jun 4‒9; Honololu, HI, USA; 2017. 链接1

[146] Lee S, Dong R, Yoshida T, Amakawa S, Hara S, Kasamatsu A, et al. 9.5 an 80 Gb/s 300 GHz-band single-chip CMOS transceiver. In: Proceedings of IEEE International Solid-State Circuits Conference—(ISSCC); 2019 Feb 17‒21; San Francisco, CA, USA; 2019. 链接1

[147] Rodríguez-Vázquez P, Grzyb J, Heineman B, Pfeiffer UR. Optimization and performance limits of a 64-QAM wireless communication link at 220‒260 GHz in a SiGe HBT technology. In: Proceedings of IEEE Radio and Wireless Symposium (RWS); 2019 Jan 20‒23; Orlando, FL, USA; 2019. 链接1

[148] Eissa MH, Malignaggi A, Wang R, Elkhouly M, Schmalz K, Ulusoy AC, et al. Wideband 240 GHz transmitter and receiver in BiCMOS technology with 25 Gbit/s data rate. IEEE J Solid State Circuits 2018;53(9):2532‒42. 链接1

[149] Rodríguez-Vázquez P, Grzyb J, Heinemann B, Pfeiffer UR. A 16-QAM 100 Gb/s 1M wireless link with an EVM of 17% at 230 GHz in an SiGe technology. IEEE Microw Wirel Compon Lett 2019;29(4):297‒9. 链接1

[150] Yu X, Jia S, Hu H, Galili M, Morioka T, Jepsen PU, et al. 160 Gbit/s photonics wireless transmission in the 300‒500 GHz band. APL Photonics 2016;1(8):081301. 链接1

[151] Pang X, Jia S, Ozolins O, Yu X, Hu H, Marcon L, et al. Single channel 106 Gbit/s 16QAM wireless transmission in the 0.4 THz band. In: Proceedings of Optical Fiber Communication Conference; 2017 Mar 19‒23; Los Angeles, CA, USA; 2017. 链接1

[152] Liu K, Jia S, Wang S, Li W, Pang X, Zheng S, et al. Enhanced accessibility of 350 GHz 100 Gbit/s 16-QAM photonic wireless link. In: Proceedings of 11th UK‒Europe‒China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT); 2018 Sep 5‒7; Hangzhou, China; 2018. 链接1

[153] Li X, Yu J, Wang K, Kong M, Zhou W, Zhu Z, et al. 120 Gb/s wireless terahertz-wave signal delivery by 375 GHz‒500 GHz multi-carrier in a 2 × 2 MIMO system. J Lightwave Technol 2019;37(2):606‒11. 链接1

[154] Jia S, Lo MC, Zhang L, Ozolins O, Udalcovs A, Kong D, et al. Integrated dual-DFB laser for 408 GHz carrier generation enabling 131 Gbit/s wireless transmission over 10.7 meters. In: Proceedings of Optical Fiber Communication Conference 2019; 2019 Mar 3‒7; San Diego, CA, USA; 2019. 链接1

[155] Nagatsuma T, Sonoda M, Higashimoto T, Yi L, Hesler J. 12.5 Gbit/s wireless link at 720 GHz based on photonics. In: Proceedings of IEEE 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz); 2019 Sep 1‒6; Paris, France; 2019. 链接1

[156] Li X, Yu J, Zhao L, Wang K, Wang C, Zhao M, et al. 1 Tb/s millimeter-wave signal wireless delivery at D-band. J Lightwave Technol 2019;37(1):196‒204. 链接1

[157] Jia S, Zhang L, Wang S, Li W, Qiao M, Lu Z, et al. 2 × 300 Gbit/s line rate PS-64QAM-OFDM THz photonic-wireless transmission. J Lightwave Technol 2020;38(17):4715‒21. 链接1

[158] Harter T, Füllner C, Kemal JN, Ummethala S, Steinmann JL, Brosi M, et al. Generalized Kramers-Kronig receiver for coherent terahertz communications. Nat Photonics 2020;14(10):601‒6. 链接1

[159] Horst Y, Blatter T, Kulmer L, Bitachon BI, Baeuerle B, Destraz M, et al. Transparent optical-THz-optical link transmission over 5/115 m at 240/190 Gbit/s enabled by plasmonics. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC); 2021 Jun 6‒10; San Francisco, CA, USA; 2021. 链接1

[160] Yi X, Wang C, Hu Z, Holloway JW, Khan MIW, Ibrahim MI, et al. Emerging terahertz integrated systems in silicon. IEEE Trans Circuits Syst I Regul Pap 2021;68(9):3537‒50. 链接1

[161] Sarieddeen H, Alouini MS, Al-Naffouri TY. An overview of signal processing techniques for terahertz communications. Proc IEEE 2021;109(10):1628‒65. 链接1

[162] Dhillon SS, Vitiello MS, Linfield EH, Davies AG, Hoffmann MC, Booske J, et al. The 2017 terahertz science and technology roadmap. J Phys D 2017;50(4):043001. 链接1

[163] Yazgan A, Jofre L, Romeu J. The state of art of terahertz sources: a communication perspective at a glance. In: Proceedings of 40th International Conference on Telecommunications and Signal Processing (TSP); 2017 Jul 5‒7; Barcelona, Spain; 2017. 链接1

[164] Tan DKP, He J, Li Y, Bayesteh A, Chen Y, Zhu P, et al. Integrated sensing and communication in 6G: motivations, use cases, requirements, challenges and future directions. In: Proceedings of 1st IEEE International Online Symposium on Joint Communications & Sensing (JC&S); 2021 Feb 23‒24; Dresden, Germany; 2021. 链接1

[165] Chiriyath AR, Paul B, Bliss DW. Radar-communications convergence: coexistence, cooperation, and co-design. IEEE Trans Cognit Commun Netw 2017;3(1):1‒12. 链接1

[166] Rahman ML, Zhang JA, Huang X, Guo YJ, Heath RW. Framework for a perceptive mobile network using joint communication and radar sensing. IEEE Trans Aerosp Electron Syst 2020;56(3):1926‒41. 链接1

[167] Bozorgi F, Sen P, Barreto AN, Fettweis G. RF front-end challenges for joint communication and radar sensing. In: Proceedings of 1st IEEE International Online Symposium on Joint Communications & Sensing (JC&S); 2021 Feb 23‒24; Dresden, Germany; 2021. 链接1

[168] Wild T, Braun V, Viswanathan H. Joint design of communication and sensing for beyond 5G and 6G systems. IEEE Access 2002;9:30845‒57. 链接1

相关研究