期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第23卷 第4期 doi: 10.1016/j.eng.2022.07.017

天然气提质过程中可有效回收丙烷和乙烷的高工业应用潜力金属有机框架材料

a Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China

b Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA

c School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China

d Department of Physics & Center for Functional Materials, Wake Forest University, Winston-Salem, NC 27109, USA

收稿日期: 2022-03-31 修回日期: 2022-06-27 录用日期: 2022-07-13 发布日期: 2022-09-18

下一篇 上一篇

摘要

开发具有高吸收和选择性的高效吸附剂用于从天然气中分离和回收C2H6和C3H8是一项重要但具有挑战性的任务。在这项工作中,我们证明了高表面极性和合适孔径是协同提高分离性能的两个关键因素,例如,金属有机框架(MOF)-303 和MIL-160(MIL:拉瓦锡材料研究所)都具有一维(1D)开放通道,其具有高密度杂原子和所需的孔径(5~7 Å)。值得注意的是,MOF-303 在298 K和5 kPa 下对C3H8的吸收高达3.38 mmol∙g−1,C3H8/CH4 (5:85, V/V)理想吸附溶液理论(IAST)选择性为5114,在所有已报道的MOF中创下新高。此外,MOF-303 也显示出很高的C2H6吸收能力(在10 kPa 时)和C2H6/CH4 (10:85, V/V)选择性,分别达到1.59 mmol∙g−1和26。与MOF-303 相比,MIL-160 的孔径更大,1D通道内杂原子密度更低,因此其具有明显较低的吸收和选择性,但其值超过了大多数报道的MOF。密度泛函理论(DFT)的计算结果表明,高表面极性和合适的孔径能协同增强框架对C3H8和C2H6的亲和力,从而产生了对C3H8和C2H6的高负载能力和选择性。在95%的相对湿度(RH)下暴露一个月后,两种MOF均具有显著的湿度稳定性,且结构没有变化。此外,这两种化合物的合成都可以很容易地通过一锅反应来放大规模,从而获得约5 g 的高结晶度样品。最后,通过三元突破性实验、再生试验和循环评价,证明了MOF-303 和MIL-160 作为先进的吸附剂在高效分离C3H8/C2H6/CH4方面的巨大潜力。其优异的分离性能、高稳定性、低成本和良好的可扩展性,是天然气净化和回收C2H6和C3H8的理想吸附剂。

补充材料

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] He Y, Zhou W, Qian G, Chen B. Methane storage in metal‒organic frameworks. Chem Soc Rev 2014;43(16):5657‒78. 链接1

[ 2 ] Sholl DS, Lively RP. Seven chemical separations to change the world. Nature 2016;532(7600):435‒7. Corrected in: Nature 2016;533(7603):316. 链接1

[ 3 ] Baker RW, Lokhandwala K. Natural gas processing with membranes: an overview. Ind Eng Chem Res 2008;47(7):2109‒21. 链接1

[ 4 ] Mason JA, Veenstra M, Long JR. Evaluating metal‒organic frameworks for natural gas storage. Chem Sci 2014;5(1):32‒51. 链接1

[ 7 ] Li L, Wang X, Liang J, Huang Y, Li H, Lin Z, et al. Water-stable anionic metal‒organic framework for highly selective separation of methane from natural gas and pyrolysis gas. ACS Appl Mater Interfaces 2016;8(15):9777‒81. 链接1

[ 8 ] Ruthven DM. Past progress and future challenges in adsorption research. Ind Eng Chem Res 2000;39(7):2127‒31. 链接1

[ 9 ] Liang W, Xiao H, Lv D, Xiao J, Li Z. Novel asphalt-based carbon adsorbents with super-high adsorption capacity and excellent selectivity for separation for light hydrocarbons. Separ Purif Tech 2018;190:60‒7. 链接1

[10] Zhao X, Wang Y, Li DS, Bu X, Feng P. Metal‒organic frameworks for separation. Adv Mater 2018;30(37):1705189. 链接1

[11] Cui WG, Hu TL, Bu XH. Metal‒organic framework materials for the separation and purification of light hydrocarbons. Adv Mater 2020;32(3):1806445. 链接1

[12] Zhai QG, Bu X, Zhao X, Li DS, Feng P. Pore space partition in metal‒organic frameworks. Acc Chem Res 2017;50(2):407‒17. 链接1

[13] Yang SQ, Sun FZ, Krishna R, Zhang Q, Zhou L, Zhang YH, et al. Propane-trapping ultramicroporous metal‒organic framework in the low-pressure area toward the purification of propylene. ACS Appl Mater Interfaces 2021;13(30):35990‒6. 链接1

[14] Yu MH, Space B, Franz D, Zhou W, He C, Li L, et al. Enhanced gas uptake in a microporous metal‒organic framework via a sorbate induced-fit mechanism. J Am Chem Soc 2019;141(44):17703‒12. 链接1

[15] Zhang Y, Yang L, Wang L, Cui X, Xing H. Pillar iodination in functional boron cage hybrid supramolecular frameworks for high performance separation of light hydrocarbons. J Mater Chem A 2019;7(48):27560‒6. 链接1

[16] Yuan B, Wang X, Zhou X, Xiao J, Li Z. Novel room-temperature synthesis of MIL-100(Fe) and its excellent adsorption performances for separation of light hydrocarbons. Chem Eng J 2019;355:679‒86. 链接1

[17] He Y, Krishna R, Chen B. Metal‒organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons. Energy Environ Sci 2012;5(10):9107‒20. 链接1

[18] Wu Y, Sun Y, Xiao J, Wang X, Li Z. Glycine-modified HKUST-1 with simultaneously enhanced moisture stability and improved adsorption for light hydrocarbons separation. ACS Sustain Chem Eng 2019;7(1):1557‒63. 链接1

[19] DeCoste JB, Peterson GW, Schindler BJ, Killops KL, Browe MA, Mahle JJ. The effect of water adsorption on the structure of the carboxylate containing metal‒organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66. J Mater Chem A 2013;1(38):11922‒32. 链接1

[20] Xian S, Peng J, Zhang Z, Xia Q, Wang H, Li Z. Highly enhanced and weakened adsorption properties of two MOFs by water vapor for separation of CO2/CH4 and CO2/N2 binary mixtures. Chem Eng J 2015;270:385‒92. 链接1

[21] Xian S, Wu Y, Wu J, Wang X, Xiao J. Enhanced dynamic CO2 adsorption capacity and CO2/CH4 selectivity on polyethylenimine-impregnated UiO-66. Ind Eng Chem Res 2015;54(44):11151‒8. 链接1

[22] Wang S, Serre C. Toward green production of water-stable metal‒organic frameworks based on high-valence metals with low toxicities. ACS Sustain Chem Eng 2019;7(14):11911‒27.

[23] Wu Y, Liu Z, Peng J, Wang X, Zhou X, Li Z. Enhancing selective adsorption in a robust pillared-layer metal‒organic framework via channel methylation for the recovery of C2‒C3 from natural gas. ACS Appl Mater Interfaces 2020;12(46):51499‒505. 链接1

[24] Silva P, Vilela SMF, Tomé JPC, Almeida Paz FA. Multifunctional metal‒organic frameworks: from academia to industrial applications. Chem Soc Rev 2015;44(19):6774‒803. 链接1

[25] Czaja A, Leung E, Trukhan N, Müller U. Industrial MOF synthesis. In: Farrusseng D, editor. Metal‒organic frameworks: applications from catalysis to gas storage. Weinheim: Wiley-VCH Verlag & Co. KGaA; 2011. 链接1

[26] Ye Y, Xian S, Cui H, Tan K, Gong L, Liang B, et al. Metal‒organic framework based hydrogen-bonding nanotrap for efficient acetylene storage and separation. J Am Chem Soc 2022;144(4):1681‒9. 链接1

[27] Yang L, Qian S, Wang X, Cui X, Chen B, Xing H. Energy-efficient separation alternatives: metal‒organic frameworks and membranes for hydrocarbon separation. Chem Soc Rev 2020;49(15):5359‒406. 链接1

[28] Devic T, Serre C. High valence 3p and transition metal based MOFs. Chem Soc Rev 2014;43(16):6097‒115. 链接1

[29] Yuan S, Qin JS, Lollar CT, Zhou HC. Stable metal‒organic frameworks with group 4 metals: current status and trends. ACS Cent Sci 2018;4(4):440‒50. 链接1

[30] Yang H, Peng F, Hong AN, Wang Y, Bu X, Feng P. Ultrastable high-connected chromium metal‒organic frameworks. J Am Chem Soc 2021;143(36):14470‒4. 链接1

[31] He T, Kong XJ, Li JR. Chemically stable metal‒organic frameworks: rational construction and application expansion. Acc Chem Res 2021;54(15):3083‒94. 链接1

[32] Kong XJ, Li JR. An overview of metal‒organic frameworks for green chemical engineering. Engineering 2021;7(8):1115‒39. 链接1

[33] Fathieh F, Kalmutzki MJ, Kapustin EA, Waller PJ, Yang J, Yaghi OM. Practical water production from desert air. Sci Adv 2018;4(6):eaat3198. 链接1

[34] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996;54(16):11169‒86. 链接1

[35] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999;59(3):1758‒75. 链接1

[36] Berland K, Cooper VR, Lee K, Schröder E, Thonhauser T, Hyldgaard P, et al. Van der Waals forces in density functional theory: a review of the vdW-DF method. Rep Prog Phys 2015;78(6):066501. 链接1

[37] Langreth DC, Lundqvist BI, Chakarova-Käck SD, Cooper VR, Dion M, Hyldgaard P, et al. A density functional for sparse matter. J Phys Condens Matter 2009;21(8):084203. 链接1

[38] Thonhauser T, Cooper VR, Li S, Puzder A, Hyldgaard P, Langreth DC. Van der Waals density functional: self-consistent potential and the nature of the van der Waals bond. Phys Rev B 2007;76(12):125112. 链接1

[39] Thonhauser T, Zuluaga S, Arter CA, Berland K, Schröder E, Hyldgaard P. Spin signature of nonlocal correlation binding in metal‒organic frameworks. Phys Rev Lett 2015;115(13):136402. 链接1

[40] He Y, Zhang Z, Xiang S, Fronczek FR, Krishna R, Chen B. A robust doubly interpenetrated metal‒organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons. Chem Commun 2012;48(52):6493‒5. 链接1

[41] He YP, Tan YX, Zhang J. Tuning a layer to a pillared-layer metal‒organic framework for adsorption and separation of light hydrocarbons. Chem Commun 2013;49(96):11323‒5. 链接1

[42] Hong AN, Yang H, Li T, Wang Y, Wang Y, Jia X, et al. Pore-space partition and optimization for propane-selective high-performance propane/propylene separation. ACS Appl Mater Interfaces 2021;13(44):52160‒6. 链接1

[43] Tang FS, Lin RB, Lin RG, Zhao JCG, Chen B. Separation of C2 hydrocarbons from methane in a microporous metal‒organic framework. J Solid State Chem 2018;258:346‒50. 链接1

[44] Yuan Y, Wu H, Xu Y, Lv D, Tu S, Wu Y, et al. Selective extraction of methane from C1/C2/C3 on moisture-resistant MIL-142A with interpenetrated networks. Chem Eng J 2020;395:125057. 链接1

[45] Shi R, Lv D, Chen Y, Wu H, Liu B, Xia Q, et al. Highly selective adsorption separation of light hydrocarbons with a porphyrinic zirconium metal‒organic framework PCN-224. Separ Purif Tech 2018;207:262‒8. 链接1

[46] Bloch ED, Queen WL, Krishna R, Zadrozny JM, Brown CM, Long JR. Hydrocarbon separations in a metal‒organic framework with open iron(II) coordination sites. Science 2012;335(6076):1606‒10. 链接1

[47] Yang H, Wang Y, Krishna R, Jia X, Wang Y, Hong AN, et al. Pore-space-partition-enabled exceptional ethane uptake and ethane-selective ethane‒ethylene separation. J Am Chem Soc 2020;142(5):2222‒7. 链接1

[48] Gao S, Morris CG, Lu Z, Yan Y, Godfrey HGW, Murray C, et al. Selective hysteretic sorption of light hydrocarbons in a flexible metal‒organic framework material. Chem Mater 2016;28(7):2331‒40. 链接1

[49] Gu J, Sun X, Kan L, Qiao J, Li G, Liu Y. Structural regulation and light hydrocarbon adsorption/separation of three zirconium‒organic frameworks based on different V-shaped ligands. ACS Appl Mater Interfaces 2021;13(35):41680‒7. 链接1

相关研究