期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第22卷 第3期 doi: 10.1016/j.eng.2022.07.020

面向工业互联网平台的双维度制造服务协作优化

a School of Mechanical and Electrical Engineering, Wuhan University of Technology, Wuhan 430070, China
b Hubei Digital Manufacturing Key Laboratory, Wuhan University of Technology, Wuhan 430070, China
c Department of Production Engineering, KTH Royal Institute of Technology, Stockholm 10044, Sweden

收稿日期: 2022-02-23 修回日期: 2022-06-15 录用日期: 2022-07-13 发布日期: 2022-11-17

下一篇 上一篇

摘要

工业互联网平台是智能制造的关键推动者,能够允许各类物理制造资源虚拟封装后以制造服务的形式进行协作。制造服务协作优化是工业互联网平台的核心功能,其目的在于针对制造任务构建高质量的服务协作方案。在对服务协作方案进行优化时,必须同时满足制造任务的制造功能需求以及制造数量需求。然而,现有的制造服务协作优化研究主要关注面向功能需求的横向服务协作,针对面向数量需求的纵向服务协作鲜有涉及。因此,本文提出了一种同时考虑制造任务功能需求和数量需求的双维度服务协作方法。首先,提出了一种多粒度的制造服务建模方法,并在此基础上建立了双维度制造服务协作优化(DMSCO)模型。在纵向维度上,多个功能相似的制造服务组成一个服务集群以共同完成一个子任务;在横向维度上,多个功能互补的服务集群协作完成整个任务。其中,制造服务的选择和所选服务之间的制造数量分配是模型中的关键问题。针对该问题,本文设计了一种具有多种局部搜索算子的多目标模因算法,并在算法中构建竞争机制以动态调整每个局部搜索算子的选择概率。实验结果表明,与常用算法相比,本文所提算法在收敛性、质量性指标和综合指标等方面均具有优势。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Zhou J, Li P, Zhou Y, Wang B, Zang J, Meng L. Toward new-generation intelligent manufacturing. Engineering 2018;4(1):11‒20. 链接1

[ 2 ] Zhong RY, Xu X, Klotz E, Newman ST. Intelligent manufacturing in the context of Industry 4.0: a review. Engineering 2017;3(5):616‒30. 链接1

[ 3 ] Tao F, Qi Q, Wang L, Nee AYC. Digital twins and cyber‒physical systems toward smart manufacturing and Industry 4.0: correlation and comparison. Engineering 2019;5(4):653‒61. 链接1

[ 4 ] Wang B. The future of manufacturing: a new perspective. Engineering 2018;4(5):722‒8. 链接1

[ 5 ] Cheng Y, Gao Y, Wang L, Tao F, Wang QG. Graph-based operational robustness analysis of Industrial Internet of Things platform for manufacturing service collaboration. Int J Prod Res 2022;2022:1‒28. 链接1

[ 6 ] Wang L, Gao T, Zhou B, Tang H, Xiang F. Manufacturing service recommendation method toward Industrial Internet platform considering the cooperative relationship among enterprises. Expert Syst Appl 2022;192:116391. 链接1

[ 7 ] Song Y, Lin J, Tang M, Dong S. An Internet of Energy Things based on wireless LPWAN. Engineering 2017;3(4):460‒6. 链接1

[ 8 ] Lin H, Garg S, Hu J, Wang X, Piran MJ, Hossain MS. Data fusion and transfer learning empowered granular trust evaluation for Internet of Things. Inf Fusion 2022;78:149‒57. 链接1

[ 9 ] Zhou H, Yang C, Sun Y. Intelligent ironmaking optimization service on a cloud computing platform by digital twin. Engineering 2021;7(9):1274‒81. 链接1

[10] Wang XV, Wang L, Mohammed A, Givehchi M. Ubiquitous manufacturing system based on cloud: a robotics application. Robot Comput Integr Manuf 2017;45:116‒25. 链接1

[11] Cheng Y, Xie Y, Wang D, Tao F, Ji P. Manufacturing services scheduling with supply-demand dual dynamic uncertainties toward Industrial Internet platforms. IEEE Trans Industr Inform 2021;17(5):2997‒3010. 链接1

[12] Zhang X, Ming X. A comprehensive industrial practice for Industrial Internet Platform (IIP): general model, reference architecture, and industrial verification. Comput Ind Eng 2021;158:107426. 链接1

[13] Li P, Cheng Y, Tao F. Failures detection and cascading analysis of manufacturing services collaboration toward Industrial Internet platforms. J Manuf Syst 2020;57:169‒81. 链接1

[14] Wang Y, Zhang Y, Tao F, Chen T, Cheng Y, Yang S. Logistics-aware manufacturing service collaboration optimisation towards Industrial Internet platform. Int J Prod Res 2019;57(12):4007‒26. 链接1

[15] Li P, Cheng Y, Song W, Tao F. Manufacturing services collaboration: connotation, framework, key technologies, and research issues. Int J Adv Manuf Technol 2020;110(9‒10):2573‒89.

[16] Bouzary H, Chen FF. A classification-based approach for integrated service matching and composition in cloud manufacturing. Robot Comput Integr Manuf 2020;66:101989. 链接1

[17] Yang B, Wang S, Li S, Jin T. A robust service composition and optimal selection method for cloud manufacturing. Int J Prod Res 2022;60(4):1134‒52. 链接1

[18] Liu Y, Wang L, Wang XV, Xu X, Zhang L. Scheduling in cloud manufacturing: state-of-the-art and research challenges. Int J Prod Res 2019;57(15‒16):4854‒79.

[19] Shi SY, Mo R, Yang HC, Chang ZY, Chen ZF. An implementation of modelling resource in a manufacturing grid for resource sharing. Int J Comput Integr Manuf 2007;20(2‒3):169‒77.

[20] Vichare P, Nassehi A, Kumar S, Newman ST. A unified manufacturing resource model for representing CNC machining systems. Robot Comput Integr Manuf 2009;25(6):999‒1007. 链接1

[21] Ameri F, McArthur C. Semantic rule modelling for intelligent supplier discovery. Int J Comput Integr Manuf 2014;27(6):570‒90. 链接1

[22] Wang XV, Wang L. A cloud-based production system for information and service integration: an Internet of Things case study on waste electronics. Enterprise Inf Syst 2017;11(7):952‒68. 链接1

[23] Li H, Chan KCC, Liang M, Luo X. Composition of resource-service chain for cloud manufacturing. IEEE Trans Ind Inform 2016;12(1):211‒29. 链接1

[24] Wu L. Resource virtualization model in cloud manufacturing. Adv Mat Res 2010;143‒144:1250‒3.

[25] Liu N, Li X, Shen W. Multi-granularity resource virtualization and sharing strategies in cloud manufacturing. J Netw Comput Appl 2014;46:72‒82. 链接1

[26] Yu C, Zhang W, Xu X, Ji Y, Yu S. Data mining based multi-level aggregate service planning for cloud manufacturing. J Intell Manuf 2018;29(6):1351‒61. 链接1

[27] Zhang Z, Zhang Y, Lu J, Xu X, Gao F, Xiao G. CMfgIA: a cloud manufacturing application mode for industry alliance. Int J Adv Manuf Technol 2018;98(9‒12):2967‒85.

[28] Li H, Weng S, Tong J, He T, Chen W, Sun M, et al. Composition of resource-service chain based on evolutionary algorithm in distributed cloud manufacturing systems. IEEE Access 2020;8:19911‒20. 链接1

[29] Lu Y, Xu X. A semantic web-based framework for service composition in a cloud manufacturing environment. J Manuf Syst 2017;42:69‒81. 链接1

[30] Ren M, Ren L, Jain H. Manufacturing service composition model based on synergy effect: a social network analysis approach. Appl Soft Comput 2018;70:288‒300. 链接1

[31] Zhou L, Zhang L, Horn BKP. Collaborative optimization for logistics and processing services in cloud manufacturing. Robot Comput Integr Manuf 2021;68:102094. 链接1

[32] Wu Y, Jia G, Cheng Y. Cloud manufacturing service composition and optimal selection with sustainability considerations: a multi-objective integer bi-level multi-follower programming approach. Int J Prod Res 2020;58(19):6024‒42. 链接1

[33] Wang Y, Wang S, Gao S, Guo X, Yang B. Adaptive multi-objective service composition reconfiguration approach considering dynamic practical constraints in cloud manufacturing. Knowl Base Syst 2021;234:107607. 链接1

[34] Tao F, LaiLi Y, Xu L, Zhang L. FC-PACO-RM: a parallel method for service composition optimal-selection in cloud manufacturing system. IEEE Trans Industr Inform 2013;9(4):2023‒33. 链接1

[35] Wang L, Liu Z, Liu A, Tao F. Artificial intelligence in product lifecycle management. Int J Adv Manuf Technol 2021;114(3‒4):771‒96.

[36] Bouzary H, Chen FF. A hybrid grey wolf optimizer algorithm with evolutionary operators for optimal QoS-aware service composition and optimal selection in cloud manufacturing. Int J Adv Manuf Technol 2019;101(9‒12):2771‒84.

[37] Akbaripour H, Houshmand M. Service composition and optimal selection in cloud manufacturing: landscape analysis and optimization by a hybrid imperialist competitive and local search algorithm. Neural Comput Appl 2020;32(15):10873‒94. 链接1

[38] Zhang S, Xu Y, Zhang W. Multitask-oriented manufacturing service composition in an uncertain environment using a hyper-heuristic algorithm. J Manuf Syst 2021;60:138‒51. 链接1

[39] Zhou J, Yao X. A hybrid approach combining modified artificial bee colony and cuckoo search algorithms for multi-objective cloud manufacturing service composition. Int J Prod Res 2017;55(16):4765‒84. 链接1

[40] Zhang Y, Tao F, Liu Y, Zhang P, Cheng Y, Zuo Y. Long/short-term utility aware optimal selection of manufacturing service composition toward Industrial Internet platforms. IEEE Trans Industr Inform 2019;15(6):3712‒22. 链接1

[41] Xue X, Wang S, Lu B. Manufacturing service composition method based on networked collaboration mode. J Netw Comput Appl 2016;59:28‒38. 链接1

[42] Zhang S, Xu S, Huang X, Zhang W, Chen M. Networked correlation-aware manufacturing service supply chain optimization using an extended artificial bee colony algorithm. Appl Soft Comput 2019;76:121‒39. 链接1

[43] Zhu LN, Li PH, Zhou XL. IHDETBO: a novel optimization method of multi-batch subtasks parallel-hybrid execution cloud service composition for cloud manufacturing. Complexity 2019;2019:7438710. 链接1

[44] Ding T, Yan G, Lei Y, Xu X. A niching behaviour-based algorithm for multi-level manufacturing service composition optimal-selection. J Ambient Intell Humaniz Comput 2020;11(3):1177‒89. 链接1

[45] Zhang Y, Xi D, Li R, Sun S. Task-driven manufacturing cloud service proactive discovery and optimal configuration method. Int J Adv Manuf Technol 2016;84(1‒4):29‒45.

[46] Ma L, Li J, Lin Q, Gong M, Coello Coello CA, Ming Z. Cost-aware robust control of signed networks by using a memetic algorithm. IEEE Trans Cybern 2020;50(10):4430‒43. 链接1

[47] Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Softw 2014;69:46‒61. 链接1

[48] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 2002;6(2):182‒97. 链接1

[49] Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength Pareto evolutionary algorithm. Report. Zürich: Eidgenössische Technische Hochschule (ETH) Zürich; 2001 May. Report No.: TIK-Report 103.

[50] Mirjalili S, Saremi S, Mirjalili SM, Coelho LDS. Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 2016;47:106‒19. 链接1

相关研究