期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第21卷 第2期 doi: 10.1016/j.eng.2022.08.017

基于元分析揭示全球尺度下反硝化反应器中基质材料对硝态氮去除的显著影响

a Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, USA

b University of Florida, Everglades Research and Education Center, Belle Glade, FL 33430, USA

c Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, USA

d Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA

收稿日期: 2021-05-31 修回日期: 2021-10-13 录用日期: 2022-08-01 发布日期: 2022-11-21

下一篇 上一篇

摘要

反硝化生物反应器(DNBR)被广泛用于减少农业废水中过量的硝态氮。其性能取决于基质的物理和化学性质。在以前的研究中,已经对一部分常见基质做了总结。然而,很少有研究尝试确定基质类型在硝态氮去除中起作用的一般模式。本研究利用从63 篇同行评议文章中收集的数据总结了41 种基质类型,包括219 个独立DNBR单元。基质分为四类:①天然碳(NC),如木屑;②非天然碳(NNC),如可生物降解聚合物[如聚己内酯(PCL)和废品(如纸板)];③无机材料(IM),如非碳材料(如氧化铁);④复合材料(MM),如上述材料的混合物。通过对硝态氮去除速率[NRR,氮去除(g∙m‒3∙d‒1)]和硝态氮去除效率(NRE, %)的元分析,对这些材料进行比较和评估。本文综合阐述了基质效果(NRR和NRE)、潜在机理、污染交换和成本分析。我们的分析表明,木屑和玉米芯是NC中最具成本效益的基质。对比所有参与研究的基质,我们建议将MM作为最优基质,尤其是具有很大的改进空间的基于木屑和玉米芯的基质。该分析有助于优化DNBR的设计,以满足使用者对环境、经济和实用的需求。

补充材料

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LJ, Liu XJ, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci USA 2009;106(9):3041‒6. 链接1

[ 2 ] Tian H, Liang X, Gong Y, Qi L, Liu Q, Kang Z, et al. Health risk assessment of nitrate pollution in shallow groundwater: a case study in China. Pol J Environ Stud 2020;29(1):827‒39. 链接1

[ 3 ] Miao S, Jin C, Liu R, Bai Y, Liu H, Hu C, et al. Microbial community structures and functions of hypersaline heterotrophic denitrifying process: lab-scale and pilot-scale studies. Bioresour Technol 2020;310:123244. 链接1

[ 4 ] Coleman BSL, Easton ZM, Bock EM. Biochar fails to enhance nutrient removal in woodchip bioreactor columns following saturation. J Environ Manage 2019;232:490‒8. 链接1

[ 5 ] Robertson WD, Vogan JL, Lombardo PS. Nitrate removal rates in a 15-year-old permeable reactive barrier treating septic system nitrate. Ground WaterMonit Remediat 2008;28(3):65‒72. 链接1

[ 6 ] Long LM, Schipper LA, Bruesewitz DA. Long-term nitrate removal in a denitrification wall. Agric Ecosyst Environ 2011;140(3‒4):514‒20.

[ 7 ] Christianson L, Tyndall J, Helmers M. Financial comparison of seven nitrate reduction strategies for Midwestern agricultural drainage. Water Resour Econ 2013;2‒3:30‒56.

[ 8 ] Addy K, Gold AJ, Christianson LE, David MB, Schipper LA, Ratigan NA. Denitrifying bioreactors for nitrate removal: a meta-analysis. J Environ Qual 2016;45(3):873‒81. 链接1

[ 9 ] Schipper LA, Robertson WD, Gold AJ, Jaynes DB, Cameron SC. Denitrifying bioreactors-an approach for reducing nitrate loads to receiving waters. Ecol Eng 2010;36(11):1532‒43. 链接1

[10] Schipper LA, Vojvodić-Vuković M. Nitrate removal from groundwater and denitrification rates in a porous treatment wall amended with sawdust. Ecol Eng 2000;14(3):269‒78. 链接1

[11] Schipper L, Vojvodic-Vukovic M. Nitrate removal from groundwater using a denitrification wall amended with sawdust: field trial. J Environ Qual 1998;27(3):664‒8. 链接1

[12] Blowes DW, Robertson WD, Ptacek CJ, Merkley C. Removal of agricultural nitrate from tile-drainage effluent water using in-line bioreactors. J Contam Hydrol 1994;15(3):207‒21. 链接1

[13] Healy MG, Rodgers M, Mulqueen J. Denitrification of a nitrate-rich synthetic wastewater using various wood-based media materials. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 2006;41(5):779‒88. 链接1

[14] Van Driel P, Robertson W, Merkley L. Denitrification of agricultural drainage using wood-based reactors. Trans ASABE 2006;49(2):565‒73. 链接1

[15] Sharrer KL, Christianson LE, Lepine C, Summerfelt ST. Modeling and mitigation of denitrification ‘woodchip’ bioreactor phosphorus releases during treatment of aquaculture wastewater. Ecol Eng 2016;93:135‒43. 链接1

[16] Feyereisen GW, Moorman TB, Christianson LE, Venterea RT, Coulter JA, Tschirner UW. Performance of agricultural residue media in laboratory denitrifying bioreactors at low temperatures. J Environ Qual 2016;45(3):779‒87. 链接1

[17] Soares MIM, Abeliovich A. Wheat straw as substrate for water denitrification. Water Res 1998;32(12):3790‒4. 链接1

[18] Aslan S, Türkman A. Combined biological removal of nitrate and pesticides using wheat straw as substrates. Process Biochem 2005;40(2):935‒43. 链接1

[19] Liu F, Wang Y, Xiao R, Wu J, Li Y, Zhang S, et al. Influence of substrates on nutrient removal performance of organic channel barriers in drainage ditches. J Hydrol 2015;527:380‒6. 链接1

[20] Della Rocca C, Belgiorno V, Meric S. Cotton-supported heterotrophic denitrification of nitrate-rich drinking water with a sand filtration posttreatment. Water SA 2005;31(2):229‒36. 链接1

[21] Della Rocca C, Belgiorno V, Meriç S. An heterotrophic/autotrophic denitrification (HAD) approach for nitrate removal from drinking water. Process Biochem 2006;41(5):1022‒8. 链接1

[22] Greenan CM, Moorman TB, Kaspar TC, Parkin TB, Jaynes DB. Comparing carbon substrates for denitrification of subsurface drainage water. J Environ Qual 2006;35(3):824‒9. 链接1

[23] Gibert O, Pomierny S, Rowe I, Kalin RM. Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB). Bioresour Technol 2008;99(16):7587‒96. 链接1

[24] Healy MG, Barrett M, Lanigan GJ, João Serrenho A, Ibrahim TG, Thornton SF, et al. Optimizing nitrate removal and evaluating pollution swapping trade-offs from laboratory denitrification bioreactors. Ecol Eng 2015;74:290‒301. 链接1

[25] Healy MG, Ibrahim TG, Lanigan GJ, Serrenho AJ, Fenton O. Nitrate removal rate, efficiency and pollution swapping potential of different organic carbon media in laboratory denitrification bioreactors. Ecol Eng 2012;40:198‒209. 链接1

[26] Cameron SG, Schipper LA. Nitrate removal and hydraulic performance of organic carbon for use in denitrification beds. Ecol Eng 2010;36(11):1588‒95. 链接1

[27] Cameron SG, Schipper LA. Hydraulic properties, hydraulic efficiency and nitrate removal of organic carbon media for use in denitrification beds. Ecol Eng 2012;41:1‒7. 链接1

[28] Hua G, Salo MW, Schmit CG, Hay CH. Nitrate and phosphate removal from agricultural subsurface drainage using laboratory woodchip bioreactors and recycled steel byproduct filters. Water Res 2016;102:180‒9. 链接1

[29] Bock EM, Coleman B, Easton ZM. Effect of biochar on nitrate removal in a pilot-scale denitrifying bioreactor. J Environ Qual 2016;45(3):762‒71. 链接1

[30] Bock E, Smith N, Rogers M, Coleman B, Reiter M, Benham B, et al. Enhanced nitrate and phosphate removal in a denitrifying bioreactor with biochar. J Environ Qual 2015;44(2):605‒13. 链接1

[31] Bruun J, Hoffmann CC, Kjaergaard C. Nitrogen removal in permeable woodchip filters affected by hydraulic loading rate and woodchip ratio. J Environ Qual 2016;45(5):1688‒95. 链接1

[32] Roser MB, Feyereisen GW, Spokas KA, Mulla DJ, Strock JS, Gutknecht J. Carbon dosing increases nitrate removal rates in denitrifying bioreactors at lowtemperature high-flow conditions. J Environ Qual 2018;47(4):856‒64. 链接1

[33] Li S, Cooke RA, Huang X, Christianson L, Bhattarai R. Evaluation of fly ash pellets for phosphorus removal in a laboratory scale denitrifying bioreactor. J Environ Manage 2018;207:269‒75. 链接1

[34] Kiani S, Kujala K, Pulkkinen JT, Aalto SL, Suurnäkki S, Kiuru T, et al. Enhanced nitrogen removal of low carbon wastewater in denitrification bioreactors by utilizing industrial waste toward circular economy. J Clean Prod 2020;254:119973. 链接1

[35] Berger AW, Valenca R, Miao Y, Ravi S, Mahendra S, Mohanty SK. Biochar increases nitrate removal capacity of woodchip biofilters during highintensity rainfall. Water Res 2019;165:115008. 链接1

[36] Bock EM, Coleman BSL, Easton ZM. Performance of an under-loaded denitrifying bioreactor with biochar amendment. J Environ Manage 2018; 217:447‒55. 链接1

[37] Boley A, Müller WR, Haider G. Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems. Aquacult Eng 2000;22(1‒2):75‒85. 链接1

[38] Honda Y, Osawa Z. Microbial denitrification of wastewater using biodegradable polycaprolactone. Polym Degrad Stabil 2002;76(2):321‒7. 链接1

[39] Walters E, Hille A, He M, Ochmann C, Horn H. Simultaneous nitrification/denitrification in a biofilm airlift suspension (BAS) reactor with biodegradable carrier material. Water Res 2009;43(18):4461‒8. 链接1

[40] Zhou H, Zhao X, Wang J. Nitrate removal from groundwater using biodegradable polymers as carbon source and biofilm support. Int J Environ Pollut 2009;38(3):339‒48. 链接1

[41] Li R, Feng CP, Xi BD, Chen N, Jiang Y, Zhao Y, et al. Nitrate removal efficiency of a mixotrophic denitrification wall for nitrate-polluted groundwater in situ remediation. Ecol Eng 2017;106(Pt A):523‒31. 链接1

[42] Shen Z, Hu J, Wang J, Zhou Y. Comparison of polycaprolactone and starch/polycaprolactone blends as carbon source for biological denitrification. Int J Environ Sci Technol 2015;12(4):1235‒42. 链接1

[43] Fenton O, Healy MG, Brennan F, Jahangir MMR, Lanigan GJ, Richards KG, et al. Permeable reactive interceptors: blocking diffuse nutrient and greenhouse gases losses in key areas of the farming landscape. J Agric Sci 2014;152(S1):71‒81. 链接1

[44] Warneke S, Schipper LA, Matiasek MG, Scow KM, Cameron S, Bruesewitz DA, et al. Nitrate removal, communities of denitrifiers and adverse effects in different carbon substrates for use in denitrification beds. Water Res 2011;45(17):5463‒75. 链接1

[45] Volokita M, Belkin S, Abeliovich A, Soares MIM. Biological denitrification of drinking water using newspaper. Water Res 1996;30(4):965‒71. 链接1

[46] Xu B, Shi L, Zhong H, Wang K. The performance of pyrite-based autotrophic denitrification column for permeable reactive barrier under natural environment. Bioresour Technol 2019;290(10):121763. 链接1

[47] Xing W, Li J, Li D, Hu J, Deng S, Cui Y, et al. Stable-isotope probing reveals the activity and function of autotrophic and heterotrophic denitrifiers in nitrate removal from organic-limited wastewater. Environ Sci Technol 2018;52(14):7867‒75. 链接1

[48] Aalto SL, Suurnäkki S, von Ahnen M, Siljanen HMP, Pedersen PB, Tiirola M. Nitrate removal microbiology in woodchip bioreactors: a case-study with full-scale bioreactors treating aquaculture effluents. Sci Total Environ 2020;723:138093. 链接1

[49] Rambags F, Tanner CC, Schipper LA. Denitrification and anammox remove nitrogen in denitrifying bioreactors. Ecol Eng 2019;138:38‒45. 链接1

[50] Liu T, Chen D, Luo X, Li X, Li F. Microbially mediated nitrate-reducing Fe(II) oxidation: quantification of chemodenitrification and biological reactions. Geochim Cosmochim Acta 2019;256:97‒115. 链接1

[51] Christianson L, Bhandari A, Helmers M, Kult K, Sutphin T, Wolf R. Performance evaluation of four field-scale agricultural drainage denitrification bioreactors in Iowa. Trans ASABE 2012;55(6):2163‒74. 链接1

[52] Christianson LE, Cooke RA, Hay CH, Helmers MJ, Feyereisen GW, Ranaivoson AZ, et al. Effectiveness of denitrifying bioreactors on water pollutant reduction from agricultural areas. Trans ASABE 2021;64(2):641‒58. 链接1

[53] Grießmeier V, Leberecht K, Gescher J. NO3- removal efficiency in field denitrification beds: key controlling factors and main implications. Environ Microbiol Rep 2019;11(3):316‒29. 链接1

[54] Yao ZB, Wang CL, Song N, Jiang H. Development of a hybrid biofilm reactor for nitrate removal from surface water with macrophyte residues as carbon substrate. Ecol Eng 2019;128:1‒8. 链接1

[55] Peng W, Pivato A, Garbo F, Wang T. Stabilization of solid digestate and nitrogen removal from mature leachate in landfill simulation bioreactors packed with aged refuse. J Environ Manage 2019;232:957‒63. 链接1

[56] Israel H, Richter RR. A guide to understanding meta-analysis. J Orthop Sport Phys 2011;41(7):496‒504. 链接1

[57] Wallace BC, Lajeunesse MJ, Dietz G, Dahabreh IJ, Trikalinos TA, Schmid CH, et al. OpenMEE: intuitive, open-source software for meta-analysis in ecology and evolutionary biology. MethodsEcol Evol 2017;8(8):941‒7. 链接1

[58] Lipsey MW, Wilson DB. Practical meta-analysis. Thousand Oaks: Sage Publications, Inc.; 2000.

[59] Zhang W, Ruan X, Bai Y, Yin L. The characteristics and performance of sustainable-releasing compound carbon source material applied on groundwater nitrate in-situ remediation. Chemosphere 2018;205:635‒42. 链接1

[60] Cornwell WK, Cornelissen JHC, Allison SD, Bauhus J, Eggleton P, Preston CM, et al. Plant traits and wood fates across the globe: rotted, burned, or consumed? Glob Change Biol 2009;15(10):2431‒49. 链接1

[61] Pluer WT, Geohring LD, Steenhuis TS, Todd WM. Controls influencing the treatment of excess agricultural nitrate with denitrifying bioreactors. J Environ Qual 2016;45(3):772‒8. 链接1

[62] Kouanda A, Hua G. Determination of nitrate removal kinetics model parameters in woodchip bioreactors. Water Res 2021;195:116974. 链接1

[63] Rivas A, Barkle G, Stenger R, Moorhead B, Clague J. Nitrate removal and secondary effects of a woodchip bioreactor for the treatment of subsurface drainage with dynamic flows under pastoral agriculture. Ecol Eng 2020;148:105786. 链接1

[64] Chu L, Wang J. Nitrogen removal using biodegradable polymers as carbon source and biofilm carriers in a moving bed biofilm reactor. Chem Eng J 2011;170(1):220‒5. 链接1

[65] Easton ZM, Rogers M, Davis M, Wade J, Eick M, Bock E. Mitigation of sulfate reduction and nitrous oxide emission in denitrifying environments with amorphous iron oxide and biochar. Ecol Eng 2015;82:605‒13. 链接1

[66] Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. Biochar effects on soil biota—a review. Soil Biol Biochem 2011;43(9):1812‒36. 链接1

[67] Maxwell BM, Birgand F, Schipper LA, Christianson LE, Tian S, Helmers MJ, et al. Increased duration of drying‒rewetting cycles increases nitrate removal in woodchip bioreactors. Agric Environ Lett 2019;4(1):190028. 链接1

[68] Pluer WT, Morris CK, Todd Walter M, Geohring LD. Denitrifying bioreactor response during storm events. Agric Water Manage 2019;213:1109‒15. 链接1

[69] Kijjanapanich P, Yaowakun Y. Enhancement of nitrate-removal efficiency using a combination of organic substrates and zero-valent iron as electron donors. J Environ Eng 2019;145(4):04019006. 链接1

[70] van der Lelie D, Taghavi S, McCorkle SM, Li LL, Malfatti SA, Monteleone D, et al. The metagenome of an anaerobic microbial community decomposing poplar wood chips. PLoS One 2012;7(5):e36740. 链接1

[71] Janusz G, Pawlik A, Sulej J, Świderska-Burek U, Jarosz-Wilkołazka A, Paszczyński A. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 2017;41(6):941‒62. 链接1

[72] Ghane E, Feyereisen GW, Rosen CJ, Tschirner UW. Carbon quality of fouryear-old woodchips in a denitrification bed treating agricultural drainage water. Trans ASABE 2018;61(3):995‒1000. 链接1

[73] Guo R, Li G, Jiang T, Schuchardt F, Chen T, Zhao Y, et al. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresour Technol 2012;112:171‒8. 链接1

[74] Ma Y, Hummel M, Määttänen M, Särkilahti A, Harlin A, Sixta H. Upcycling of waste paper and cardboard to textiles. Green Chem 2016;18(3):858‒66. 链接1

[75] Wang X, Yang G, Feng Y, Ren G, Han X. Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic codigestion of dairy, chicken manure and wheat straw. Bioresour Technol 2012;120:78‒83. 链接1

[76] Worasuwannarak N, Sonobe T, Tanthapanichakoon W. Pyrolysis behaviors of rice straw, rice husk, and corncob by TG‒MS technique. J Anal Appl Pyrolysis 2007;78(2):265‒71. 链接1

[77] von Ahnen M, Aalto SL, Suurnäkki S, Tiirola M, Pedersen PB. Salinity affects nitrate removal and microbial composition of denitrifying woodchip bioreactors treating recirculating aquaculture system effluents. Aquaculture 2019;504:182‒9. 链接1

[78] Halaburka BJ, LeFevre GH, Luthy RG. Evaluation of mechanistic models for nitrate removal in woodchip bioreactors. Environ Sci Technol 2017;51(9):5156‒64. 链接1

[79] Lepine C, Christianson L, Sharrer K, Summerfelt S. Optimizing hydraulic retention times in denitrifying woodchip bioreactors treating recirculating aquaculture system wastewater. J Environ Qual 2016;45(3):813‒21. 链接1

[80] Hoover NL, Bhandari A, Soupir ML, Moorman TB. Woodchip denitrification bioreactors: impact of temperature and hydraulic retention time on nitrate removal. J Environ Qual 2016;45(3):803‒12. 链接1

[81] Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nat Rev Microbiol 2018;16(5):263‒76. 链接1

[82] Carlson HK, Lui LM, Price MN, Kazakov AE, Carr AV, Kuehl JV, et al. Selective carbon sources influence the end products of microbial nitrate respiration. ISME J 2020;14(8):2034‒45. 链接1

[83] Kelso B, Smith RV, Laughlin RJ, Lennox SD. Dissimilatory nitrate reduction in anaerobic sediments leading to river nitrite accumulation. Appl Environ Microbiol 1997;63(12):4679‒85. 链接1

[84] Parkes SD, Jolley DF, Wilson SR. Inorganic nitrogen transformations in the treatment of landfill leachate with a high ammonium load: a case study. Environ Monit Assess 2007;124(1‒3):51‒61.

[85] Hansen HCB, Guldberg S, Erbs M, Koch CB. Kinetics of nitrate reduction by green rusts-effects of interlayer anion and Fe(II):Fe(III) ratio. Appl Clay Sci 2001;18(1‒2):81‒91.

[86] Coby AJ, Picardal FW. Inhibition of NO3- and NO2- reduction by microbial Fe(III) reduction: evidence of a reaction between NO2- and cell surface-bound Fe2+. Appl Environ Microbiol 2005;71(9):5267‒74. 链接1

[87] Rancourt DG, Thibault PJ, Mavrocordatos D, Lamarche G. Hydrous ferric oxide precipitation in the presence of nonmetabolizing bacteria: constraints on the mechanism of a biotic effect. Geochim Cosmochim Acta 2005;69(3):553‒77. 链接1

[88] Mulder A, van de Graaf AA, Robertson LA, Kuenen JG. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 1995;16(3):177‒83. 链接1

[89] Cao S, Du R, Zhou Y. Coupling anammox with heterotrophic denitrification for enhanced nitrogen removal: a review. Crit Rev Environ Sci Technol 2021;51(19):2260‒93. 链接1

[90] Kimura Y, Isaka K, Kazama F. Effects of inorganic carbon limitation on anaerobic ammonium oxidation (anammox) activity. Bioresour Technol 2011;102(6):4390‒4. 链接1

[91] Elgood Z, Robertson WD, Schiff SL, Elgood R. Nitrate removal and greenhouse gas production in a stream-bed denitrifying bioreactor. Ecol Eng 2010;36(11):1575‒80. 链接1

[92] Bock EM, Coleman BSL, Easton ZM. Effect of biochar, hydraulic residence time, and nutrient loading on greenhouse gas emission in laboratory-scale denitrifying bioreactors. Ecol Eng 2018;120:375‒83. 链接1

[93] Wang Q, Jiang G, Ye L, Pijuan M, Yuan Z. Heterotrophic denitrification plays an important role in N2O production from nitritation reactors treating anaerobic sludge digestion liquor. Water Res 2014;62:202‒10. 链接1

[94] Zhou W, Sun Y, Wu B, Zhang Y, Huang M, Miyanaga T, et al. Autotrophic denitrification for nitrate and nitrite removal using sulfur-limestone. J Environ Sci (China) 2011;23(11):1761‒9. 链接1

[95] Liu X, Xu J, Huang J, Huang M, Wang T, Bao S, et al. Bacteria-supported iron scraps for the removal of nitrate from low carbon-to-nitrogen ratio wastewater. RSC Adv 2019;9(6):3285‒93. 链接1

[96] Pluer WT, Todd Walter M, Steinschneider S. Understanding complex flow pathways within lab-scale denitrifying bioreactors with a conservative tracer. Trans ASABE 2020;63(2):417‒27. 链接1

[97] Christianson LE, Bhandari A, Hailers MJ. A practice-oriented review of woodchip bioreactors for subsurface agricultural drainage. Appl Eng Agric 2012;28(6):861‒74. 链接1

[98] Di Capua F, Pirozzi F, Lens PNL, Esposito G. Electron donors for autotrophic denitrification. Chem Eng J 2019;362:922‒37. 链接1

[99] Schipper LA, Cameron SC, Warneke S. Nitrate removal from three different effluents using large-scale denitrification beds. Ecol Eng 2010;36(11):1552‒7. 链接1

[100] Tangsir S, Moazed H, Naseri AA, Hashemi Garmdareh SE, Broumand-nasab S, Bhatnagar A. Investigation on the performance of sugarcane bagasse as a new carbon source in two hydraulic dimensions of denitrification beds. J Clean Prod 2017;140(Pt 3):1176‒81. 链接1

[101] Povilaitis A, Matikiene˙ J. Nitrate removal from tile drainage water: the performance of denitrifying woodchip bioreactors amended with activated carbon and flaxseed cake. Agric Water Manage 2020;229:105937. 链接1

[102] Miao S, Jin C, Liu R, Bai Y, Lan H, Liu H, et al. Carbon harvesting from organic liquid wastes for heterotrophic denitrification: feasibility evaluation and cost and emergy optimization. Resour Conserv Recycling 2020;160:104782. 链接1

相关研究