期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第23卷 第4期 doi: 10.1016/j.eng.2022.09.011

面向三频WiFi应用的分集玻璃天线

a State Key Laboratory of Terahertz and Millimeter Waves and Department of Electrical Engineering, City University of Hong Kong, Hong Kong 999077, China

b School of Electronics and Information Technology (School of Microelectronics), Sun Yat-sen University, Guangzhou 510006, China

c Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou 510006, China

d Information and Communication Technology Center, CityU Shenzhen Research Institute, Shenzhen 518057, China

e School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510630, China

收稿日期: 2021-12-10 修回日期: 2022-04-25 录用日期: 2022-09-01 发布日期: 2022-11-14

下一篇 上一篇

摘要

本文研究了两种新型极化和方向图分集玻璃介质谐振器天线(DRA),均适用于三频段(2.4 GHz、5.2 GHz和5.8 GHz)无线保真(WiFi)应用。通过比较这两种分集DRA以及一种新的空间分集玻璃DRA,研究了哪种类型的分集天线最适合WiFi 路由器应用。同时,将这三种分集玻璃DRA还与商用空间分集单极子对进行了比较,以衡量玻璃DRA在WiFi 路由器应用中的性能。本文在极化分集天线中,提出了双端口馈电方案来激发不同的DRA模式。DRA模式的频率通过使用阶梯形DRA进行调谐。在方向图分集设计中,引入了堆叠DRA来拓宽锥形和宽边辐射模式的带宽。实验制作了这三种新型分集天线,并测量了三种分集玻璃天线和参考空间分集单极天线的误码率(BER),并对结果进行了比较和讨论。结果表明,极化分集全向DRA的误码率最为稳定。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

图17

图18

图19

图20

图21

参考文献

[ 1 ] Li Q, Yu X, Xie M, Li N, Dang X. Performance analysis of uplink massive spatial modulation MIMO systems in transmit-correlated Rayleigh channels. China Commun 2021;18(2):27‒39. 链接1

[ 2 ] Hashemi H. The indoor radio propagation channel. Proc IEEE 1993;81(7):943‒68. 链接1

[ 3 ] Cox D, Murray R, Arnold H, Norris A, Wazowicz M. Cross-polarization coupling measured for 800 MHz radio transmission in and around houses and large buildings. IEEE Trans Antennas Propag 1986;34(1):83‒7. 链接1

[ 4 ] Chizhik D, Ling J, Valenzuela RA. The effect of electric field polarization on indoor propagation. In: Proceedings of IEEE 1998 International Conference on Universal Personal Communications; 1998 Oct 5‒9; Florence, Italy; 1998. 链接1

[ 5 ] Turkmani AMD, Arowojolu AA, Jefford PA, Kellett CJ. An experimental evaluation of the performance of two-branch space and polarization diversity schemes at 1800 MHz. IEEE Trans Veh Technol 1995;44(2):318‒26. 链接1

[ 6 ] Morshedi A, Torlak M. Measured comparison of dual-branch signaling over space and polarization diversity. IEEE Trans Antennas Propag 2011;59(5):1678‒87. 链接1

[ 7 ] Fan Y, Liu X, Liu B, Li R. A broadband dual-polarized omnidirectional antenna based on orthogonal dipoles. IEEE Antennas Wirel Propag Lett 2016;15:1257‒60. 链接1

[ 8 ] Guinvarc’h R, Serhir M, Boust F. A compact dual-polarized 3:1 bandwidth omnidirectional array of spiral antennas. IEEE Antennas Wirel Propag Lett 2016;15:1909‒12. 链接1

[ 9 ] Ye LH, Cao YF, Zhang XY, Gao Y, Xue Q. Wideband dual-polarized omnidirectional antenna array for base-station applications. IEEE Trans Antennas Propag 2019;67(10):6419‒29. 链接1

[10] Wu J, Yang S, Chen Y, Qu S, Nie Z. A low profile dual-polarized wideband omnidirectional antenna based on AMC reflector. IEEE Trans Antennas Propag 2017;65(1):368‒74. 链接1

[11] Wen S, Xu Y, Dong Y. A low-profile dual-polarized omnidirectional antenna for LTE base station applications. IEEE Trans Antennas Propag 2021;69(9):5974‒9. 链接1

[12] Huang H, Liu Y, Gong S. Broadband dual-polarized omnidirectional antenna for 2G/3G/LTE/WiFi applications. IEEE Antennas Wirel Propag Lett 2016;15:576‒9. 链接1

[13] Quan X, Li R. A broadband dual-polarized omnidirectional antenna for base stations. IEEE Trans Antennas Propag 2013;61(2):943‒7. 链接1

[14] Ando A, Kondo A, Kubota S. A study of radio zone length of dual-polarized omnidirectional antennas mounted on rooftop for personal handy-phone system. IEEE Trans Veh Technol 2008;57(1):2‒10. 链接1

[15] Ta SX, Nguyen DM, Nguyen KK, Dao CN, Nguyen-Trong N. Dual-polarized omnidirectional antenna with simple feed and ultrawide bandwidth. IEEE Antennas Wirel Propag Lett 2020;19(5):871‒5.

[16] Li W, Leung KW, Yang N. Omnidirectional dielectric resonator antenna with a planar feed for circular polarization diversity design. IEEE Trans Antennas Propag 2018;66(3):1189‒97. 链接1

[17] Zou L, Abbott D, Fumeaux C. Omnidirectional cylindrical dielectric resonator antenna with dual polarization. IEEE Antennas Wirel Propa Lett 2012;11:515‒8. 链接1

[18] Li Y, Zhang Z, Feng Z, Iskander MF. Design of omnidirectional dual-polarized antenna in slender and low-profile column. IEEE Trans Antennas Propag 2014;62(4):2323‒6. 链接1

[19] Yang N, Leung KW, Wu N. Pattern-diversity cylindrical dielectric resonator antenna using fundamental modes of different mode families. IEEE Trans Antennas Propag 2019;67(11):6778‒88. 链接1

[20] Li WW, Leung KW. Omnidirectional circularly polarized dielectric resonator antenna with top-loaded Alford loop for pattern diversity design. IEEE Trans Antennas Propag 2013;61(8):4246‒56. 链接1

[21] Gray D, Watanabe T. Three orthogonal polarisation DRA-monopole ensemble. Electron Lett 2003;39(10):766‒7. 链接1

[22] Liu X, Wu Y, Zhuang Z, Wang W, Liu Y. A dual-band patch antenna for pattern diversity application. IEEE Access 2018;6:51986‒93. 链接1

[23] Dong Y, Choi J, Itoh T. Vivaldi antenna with pattern diversity for 0.7 to 2.7 GHz cellular band applications. IEEE Antennas Wirel Propag Lett 2018;17(2): 247‒50. 链接1

[24] Chi PL, Itoh T. Miniaturized dual-band directional couplers using composite right/ left-handed transmission structures and their applications in beam pattern diversity systems. IEEE Trans Microw Theory Tech 2009;57(5): 1207‒15. 链接1

[25] Yan S, Vandenbosch GAE. Low-profile dual-band pattern diversity patch antenna based on composite right/left-handed transmission line. IEEE Trans Antennas Propag 2017;65(6):2808‒15. 链接1

[26] Sun L, Zhang G, Sun B, Tang W, Yuan J. A single patch antenna with broadside and conical radiation patterns for 3G/4G pattern diversity. IEEE Antennas Wirel Propag Lett 2016;15:433‒6. 链接1

[27] Fang XS, Leung KW, Luk KM. Theory and experiment of three-port polarization-diversity cylindrical dielectric resonator antenna. IEEE Trans Antennas Propag 2014;62(10):4945‒51. 链接1

[28] Wang W, Zhao Z, Sun Q, Liao X, Fang Z, See KY, et al. Compact quad-element vertically-polarized high-isolation wideband MIMO antenna for vehicular base station. IEEE Trans Veh Technol 2020;69(9):10000‒8. 链接1

[29] Amjadi SM, Sarabandi K. Mutual coupling mitigation in broadband multipleantenna communication systems using feedforward technique. IEEE Trans Antennas Propag 2016;64(5):1642‒52. 链接1

[30] Long S, McAllister M, Shen L. The resonant cylindrical dielectric cavity antenna. IEEE Trans Antennas Propag 1983;31(3):406‒12. 链接1

[31] Mongia RK, Ittipiboon A. Theoretical and experimental investigations on rectangular dielectric resonator antennas. IEEE Trans Antennas Propag 1997;45(9):1348‒56. 链接1

[32] Sabouni A, Kishk AA. Dual-polarized, broadside, thin dielectric resonator antenna for microwave imaging. IEEE Antennas Wirel Propag Lett 2013;12:380‒3. 链接1

[33] LeungKW LEH, Fang XS. Dielectric resonator antennas: from the basic to the aesthetic. Proc IEEE 2012;100(7):2181‒93. 链接1

[34] Karaboikis MP, Papamichael VC, Tsachtsiris GF, Soras CF, Makios VT. Integrating compact printed antennas onto small diversity/MIMO terminals. IEEE Trans Antennas Propag 2008;56(7):2067‒78. 链接1

[35] Hu PF, Pan YM, Zhang XY, Zheng SY. Broadband filtering dielectric resonator antenna with wide stopband. IEEE Trans Antennas Propag 2017;65(4):2079‒84. 链接1

相关研究