期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第24卷 第5期 doi: 10.1016/j.eng.2022.09.016

用于生物医学的基于微藻的生物杂化材料的设计和开发

a Interdisciplinary Nanoscience Center, Aarhus University, Aarhus DK-8000, Denmark
b College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Tuyun 558000, China
c State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China

# These authors contributed equally to this work.

收稿日期: 2021-10-29 修回日期: 2022-05-20 录用日期: 2022-09-30 发布日期: 2023-04-14

下一篇 上一篇

摘要

微藻是一种体积微小的真核生物,可通过叶绿素a 的光合作用将二氧化碳转化为多种生物活性物质。在过去的10 年中,有关活体微藻和由其他生物相容性成分组成的生物杂化材料在解决许多医学难题,如肿瘤治疗、组织重建和药物输送方面显示出巨大的潜力。固定在常规生物材料中的微藻可以长时间维持其光合活性,从而在局部提供氧气,同时也可作为调节细胞活性的生物相容性界面材料。微藻的运动性还激发了生物杂化机器人的发展,其中药物分子可通过非共价键吸附结合至微藻表面,并通过精确控制其运动轨迹将药物输送到目标区域。此外,微藻的自发荧光、趋光性和生物质生产特性可以被整合到具有多种功能的新型生物杂化材料的设计中;通过基因工程改造的微藻可以赋予生物杂化材料新的特性,如特异性细胞靶向能力和从藻类细胞中局部释放重组蛋白。这些技术有望促进微藻基生物杂化材料(MBBM)在多个生物医学领域的临床应用。本文总结了MBBM的制造、生理学和运动能力;然后,回顾了MBBM近年来在生物医学领域的典型应用报道;最后,对MBBM的挑战和未来前景进行了讨论。

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Chisti Y. Microalgae as sustainable cell factories. Environ Eng Manag J 2006;5(3):261‒74. 链接1

[ 2 ] Asha V, Bhajantri NU, Nagabhushan P. GLCM-based chi-square histogram distance for automatic detection of defects on patterned textures. Int J Comput Vis Robot 2011;2(4):302‒13. 链接1

[ 3 ] Mulbry W, Kondrad S, Pizarro C, Kebede-Westhead E. Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour Technol 2008;99(17):8137‒42. 链接1

[ 4 ] Kathiresan K, Duraisamy A. Current issue of marine microbiology. ENVIS Newsl 2006;4:3‒5.

[ 5 ] García JL, de Vicente M, Galán B. Microalgae, old sustainable food and fashion nutraceuticals. Microb Biotechnol 2017;10(5):1017‒24. 链接1

[ 6 ] Leng L, Wei L, Xiong Q, Xu S, Li W, Lv S, et al. Use of microalgae based technology for the removal of antibiotics from wastewater: a review. Chemosphere 2020;238:124680. 链接1

[ 7 ] Kiki C, Rashid A, Wang Y, Li Y, Zeng Q, Yu CP, et al. Dissipation of antibiotics by microalgae: kinetics, identification of transformation products and pathways. J Hazard Mater 2020;387:121985. 链接1

[ 8 ] Xiong Q, Hu LX, Liu YS, Zhao JL, He LY, Ying GG. Microalgae-based technology for antibiotics removal: from mechanisms to application of innovational hybrid systems. Environ Int 2021;155:106594. 链接1

[ 9 ] Saw CLL. Science against microbial pathogens: photodynamic therapy approaches. In: Mendez-Vilas A, editor. Science against microbial pathogens: communicating current research and technological advances. Badajoz: Formatex Research Center; 2011. p. 668‒74.

[10] Alsenani F, Tupally KR, Chua ET, Eltanahy E, Alsufyani H, Parekh HS, et al. Evaluation of microalgae and cyanobacteria as potential sources of antimicrobial compounds. Saudi Pharm J 2020;28(12):1834‒41. 链接1

[11] de Jesus Raposo MF, De Morais RMSC, de Morais AMMB. Health applications of bioactive compounds from marine microalgae. Life Sci 2013;93(15):479‒86. 链接1

[12] Sithranga Boopathy N, Kathiresan K. Anticancer drugs from marine flora: an overview. J Oncol 2010;2010:214186. 链接1

[13] de-Bashan LE, Bashan Y. Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 2010;101(6):1611‒27. 链接1

[14] Brayner R, Couté A, Livage J, Perrette C, Sicard C. Micro-algal biosensors. Anal Bioanal Chem 2011;401(2):581‒97. 链接1

[15] Abd El-Hack ME, Abdelnour S, Alagawany M, Abdo M, Sakr MA, Khafaga AF, et al. Microalgae in modern cancer therapy: current knowledge. Biomed Pharmacother 2019;111:42‒50. 链接1

[16] Prakash JW, Antonisamy JM, Jeeva S. Antimicrobial activity of certain fresh water microalgae from Thamirabarani River, Tamil Nadu, South India. Asian Pac J Trop Biomed 2011;1(2 Suppl):S170‒3. 链接1

[17] Ragni R, Cicco SR, Vona D, Farinola GM. Multiple routes to smart nanostructured materials from diatom microalgae: a chemical perspective. Adv Mater 2018;30(19):1704289. 链接1

[18] de Jesus Raposo MF, De Morais RMSC, de Morais AMMB. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar Drugs 2013;11(1):233‒52. 链接1

[19] Khavari F, Saidijam M, Taheri M, Nouri F. Microalgae: therapeutic potentials and applications. Mol Biol Rep 2021;48(5):4757‒65.

[20] Sun L, Yu Y, Chen Z, Bian F, Ye F, Sun L, et al. Biohybrid robotics with living cell actuation. Chem Soc Rev 2020;49(12):4043‒69. 链接1

[21] Xu D, Wang Y, Liang C, You Y, Sanchez S, Ma X. Self-propelled micro/nanomotors for on-demand biomedical cargo transportation. Small 2020;16(27):1902464. 链接1

[22] Halder A, Sun Y. Biocompatible propulsion for biomedical micro/nano robotics. Biosens Bioelectron 2019;139:111334. 链接1

[23] Dahoumane SA, Mechouet M, Wijesekera K, Filipe CDM, Sicard C, Bazylinski DA, et al. Algae-mediated biosynthesis of inorganic nanomaterials as a promising route in nanobiotechnology—a review. Green Chem 2017;19(3):552‒87. 链接1

[24] Ng WM, Che HX, Guo C, Liu C, Low SC, Chan DJC, et al. Artificial magnetotaxis of microbot: magnetophoresis versus self-swimming. Langmuir 2018;34(27):7971‒80. 链接1

[25] Qiao Y, Yang F, Xie T, Du Z, Zhong D, Qi Y, et al. Engineered algae: a novel oxygen-generating system for effective treatment of hypoxic cancer. Sci Adv 2020;6(21):eaba5996. 链接1

[26] Akolpoglu MB, Dogan NO, Bozuyuk U, Ceylan H, Kizilel S, Sitti M. High-yield production of biohybrid microalgae for on-demand cargo delivery. Adv Sci 2020;7(16):2001256. 链接1

[27] McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresour Technol 2002;83(1):37‒46. 链接1

[28] Tanaka K, Koga T, Konishi F, Nakamura M, Mitsuyama M, Himeno K, et al. Augmentation of host defense by a unicellular green alga, Chlorella vulgaris, to Escherichia coli infection. Infect Immun 1986;53(2):267‒71. 链接1

[29] Bedirli A, Kerem M, Ofluoglu E, Salman B, Katircioglu H, Bedirli N, et al. Administration of Chlorella sp. microalgae reduces endotoxemia, intestinal oxidative stress and bacterial translocation in experimental biliary obstruction. Clin Nutr 2009;28(6):674‒8. 链接1

[30] Zhang Z, Xu R, Wang Z, Dong M, Cui B, Chen M. Visible-light neural stimulation on graphitic-carbon nitride/graphene photocatalytic fibers. ACS Appl Mater Interfaces 2017;9(40):34736‒43. 链接1

[31] Chen Y, Taskin MB, Zhang Z, Su Y, Han X, Chen M. Bioadhesive anisotropic nanogrooved microfibers directing three-dimensional neurite extension. Biomater Sci 2019;7(5):2165‒73. 链接1

[32] Xu R, Zhang Z, Toftdal MS, Møller AC, Dagnaes-Hansen F, Dong M, et al. Synchronous delivery of hydroxyapatite and connective tissue growth factor derived osteoinductive peptide enhanced osteogenesis. J Control Release 2019;301:129‒39. 链接1

[33] Zhang Y, Zhang Z, Wang Y, Su Y, Chen M. 3D myotube guidance on hierarchically organized anisotropic and conductive fibers for skeletal muscle tissue engineering. Mater Sci Eng C 2020;116:111070. 链接1

[34] Majidi SS, Slemming-Adamsen P, Hanif M, Zhang Z, Wang Z, Chen M. Wet electrospun alginate/gelatin hydrogel nanofibers for 3D cell culture. Int J Biol Macromol 2018;118(Pt B):1648‒54. 链接1

[35] Mărgăoan R, Topal E, Balkanska R, Yücel B, Oravecz T, Cornea-Cipcigan M, et al. Monofloral honeys as a potential source of natural antioxidants, minerals and medicine. Antioxidants 2021;10(7):1023. 链接1

[36] Shanab SMM, Mostafa SSM, Shalaby EA, Mahmoud GI. Aqueous extracts of microalgae exhibit antioxidant and anticancer activities. Asian Pac J Trop Biomed 2012;2(8):608‒15. 链接1

[37] de Morais MG, Stillings C, Dersch R, Rudisile M, Pranke P, Costa JAV, et al. Preparation of nanofibers containing the microalga Spirulina (Arthrospira). Bioresour Technol 2010;101(8):2872‒6. 链接1

[38] Cha BG, Kwak HW, Park AR, Kim SH, Park SY, Kim HJ, et al. Structural characteristics and biological performance of silk fibroin nanofiber containing microalgae Spirulina extract. Biopolymers 2014;101(4):307‒18. 链接1

[39] Steffens D, Lersch M, Rosa A, Scher C, Crestani T, Morais MG, et al. A new biomaterial of nanofibers with the microalga Spirulina as scaffolds to cultivate with stem cells for use in tissue engineering. J Biomed Nanotechnol 2013;9(4):710‒8. 链接1

[40] Kim SH, Shin C, Min SK, Jung SM, Shin HS. In vitro evaluation of the effects of electrospun PCL nanofiber mats containing the microalgae Spirulina (Arthrospira) extract on primary astrocytes. Colloids Surf B 2012;90:113‒8. 链接1

[41] Miguel SP, Ribeiro MP, Otero A, Coutinho P. Application of microalgae and microalgal bioactive compounds in skin regeneration. Algal Res 2021;58:102395. 链接1

[42] Tang YZ, Dobbs FC. Green autofluorescence in dinoflagellates, diatoms, and other microalgae and its implications for vital staining and morphological studies. Appl Environ Microbiol 2007;73(7):2306‒13. 链接1

[43] Carpenter EJ, Chang J, Shapiro LP. Green and blue fluorescing dinoflagellates in Bahamian waters. Mar Biol 1991;108(1):145‒9. 链接1

[44] Elbrächter M. Green autofluorescence—a new taxonomic feature for living dinoflagellate cysts and vegetative cells. Rev Palaeobot Palynol 1994;84(1‒2):101‒5.

[45] Liu Y, Rafailovich MH, Malal R, Cohn D, Chidambaram D. Engineering of bio-hybrid materials by electrospinning polymer-microbe fibers. Proc Natl Acad Sci USA 2009;106(34):14201‒6. 链接1

[46] Rooke JC, Léonard A, Meunier CF, Sarmento H, Descy JP, Su BL. Hybrid photosynthetic materials derived from microalgae Cyanidium caldarium encapsulated within silica gel. J Colloid Interface Sci 2010;344(2):348‒52. 链接1

[47] Desmet J, Meunier CF, Danloy EP, Duprez ME, Hantson AL, Thomas D, et al. Green and sustainable production of high value compounds via a microalgae encapsulation technology that relies on CO2 as a principle reactant. J Mater Chem A 2014;2(48):20560‒9. 链接1

[48] Chen H, Cheng Y, Tian J, Yang P, Zhang X, Chen Y, et al. Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes. Sci Adv 2020;6(20):eaba4311. 链接1

[49] Nguyen-Ngoc H, Tran-Minh C. Sol‒gel process for vegetal cell encapsulation. Mater Sci Eng C 2007;27(4):607‒11. 链接1

[50] Rooke JC, Léonard A, Su BL. Targeting photobioreactors: immobilisation of cyanobacteria within porous silica gel using biocompatible methods. J Mater Chem 2008;18(12):1333‒41. 链接1

[51] Léonard A, Rooke JC, Meunier CF, Sarmento H, Descy JP, Su BL. Cyanobacteria immobilised in porous silica gels: exploring biocompatible synthesis routes for the development of photobioreactors. Energy Environ Sci 2010;3(3):370‒7. 链接1

[52] Darder M, Aranda P, Burgos-Asperilla L, Llobera A, Cadarso VJ, Fernández-Sánchez C, et al. Algae‒silica systems as functional hybrid materials. J Mater Chem 2010;20(42):9362‒9. 链接1

[53] Voznesenskiy SS, Popik AY, Gamayunov EL, Orlova TY, Markina ZV, Postnova IV, et al. One-stage immobilization of the microalga Porphyridium purpureum using a biocompatible silica precursor and study of the fluorescence of its pigments. Eur Biophys J 2018;47(1):75‒85. Erratum in: Eur Biophys J 2018;47(1):87. 链接1

[54] Dickson DJ, Page CJ, Ely RL. Photobiological hydrogen production from Synechocystis sp. PCC 6803 encapsulated in silica sol‒gel. Int J Hydrogen Energy 2009;34(1):204‒15. 链接1

[55] Nguyen-Ngoc H, Tran-Minh C. Fluorescent biosensor using whole cells in an inorganic translucent matrix. Anal Chim Acta 2007;583(1):161‒5. 链接1

[56] Schenck TL, Hopfner U, Chávez MN, Machens HG, Somlai-Schweiger I, Giunta RE, et al. Photosynthetic biomaterials: a pathway towards autotrophic tissue engineering. Acta Biomater 2015;15:39‒47. 链接1

[57] Chávez MN, Schenck TL, Hopfner U, Centeno-Cerdas C, Somlai-Schweiger I, Schwarz C, et al. Towards autotrophic tissue engineering: photosynthetic gene therapy for regeneration. Biomaterials 2016;75:25‒36. 链接1

[58] Homburg SV, Kruse O, Patel AV. Growth and photosynthetic activity of Chlamydomonas reinhardtii entrapped in lens-shaped silica hydrogels. J Biotechnol 2019;302:58‒66. 链接1

[59] Xiong W, Yang Z, Zhai H, Wang G, Xu X, Ma W, et al. Alleviation of high light-induced photoinhibition in cyanobacteria by artificially conferred biosilica shells. Chem Commun 2013;49(68):7525‒7. 链接1

[60] Hopfner U, Schenck TL, Chávez MN, Machens HG, Bohne AV, Nickelsen J, et al. Development of photosynthetic biomaterials for in vitro tissue engineering. Acta Biomater 2014;10(6):2712‒7. 链接1

[61] San Keskin NO, Celebioglu A, Uyar T, Tekinay T. Microalgae immobilized by nanofibrous web for removal of reactive dyes from wastewater. Ind Eng Chem Res 2015;54(21):5802‒9. 链接1

[62] Wüst S, Godla ME, Müller R, Hofmann S. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater 2014;10(2):630‒40. 链接1

[63] Großerhode C, Wehlage D, Grothe T, Grimmelsmann N, Fuchs S, Hartmann J, et al. Investigation of microalgae growth on electrospun nanofiber mats. AIMS Bioeng 2017;4(3):376‒85. 链接1

[64] Eroglu E, Agarwal V, Bradshaw M, Chen X, Smith SM, Raston CL, et al. Nitrate removal from liquid effluents using microalgae immobilized on chitosan nanofiber mats. Green Chem 2012;14(10):2682‒5. 链接1

[65] Obaíd ML, Camacho JP, Brennet M, Corrales-Orovio R, Carvajal F, Martorell X, et al. A first in human trial implanting microalgae shows safety of photosynthetic therapy for the effective treatment of full thickness skin wounds. Front Med 2021;8:2088. 链接1

[66] Zhang Z, Jørgensen ML, Wang Z, Amagat J, Wang Y, Li Q, et al. 3D anisotropic photocatalytic architectures as bioactive nerve guidance conduits for peripheral neural regeneration. Biomaterials 2020;253:120108. 链接1

[67] Wang Y, Zhang Y, Zhang Z, Su Y, Wang Z, Dong M, et al. An injectable high-conductive bimaterial scaffold for neural stimulation. Colloids Surf B 2020;195:111210. 链接1

[68] Su Y, Zhang Z, Wan Y, Zhang Y, Wang Z, Klausen LH, et al. A hierarchically ordered compacted coil scaffold for tissue regeneration. NPG Asia Mater 2020;12(1):55. 链接1

[69] Pannier A, Soltmann U, Soltmann B, Altenburger R, Schmitt-Jansen M. Alginate/silica hybrid materials for immobilization of green microalgae Chlorella vulgaris for cell-based sensor arrays. J Mater Chem B 2014;2(45):7896‒909. 链接1

[70] Lode A, Krujatz F, Brüggemeier S, Quade M, Schütz K, Knaack S, et al. Green bioprinting: fabrication of photosynthetic algae-laden hydrogel scaffolds for biotechnological and medical applications. Eng Life Sci 2015;15(2):177‒83. 链接1

[71] Trampe E, Koren K, Akkineni AR, Senwitz C, Krujatz F, Lode A, et al. Functionalized bioink with optical sensor nanoparticles for O2 imaging in 3D-bioprinted constructs. Adv Funct Mater 2018;28(45):1804411. 链接1

[72] Wahid MH, Eroglu E, Chen X, Smith SM, Raston CL. Functional multi-layer graphene‒algae hybrid material formed using vortex fluidics. Green Chem 2013;15(3):650‒5. 链接1

[73] Eroglu E, D’Alonzo NJ, Smith SM, Raston CL. Vortex fluidic entrapment of functional microalgal cells in a magnetic polymer matrix. Nanoscale 2013;5(7):2627‒31. 链接1

[74] Wahid MH, Eroglu E, Chen X, Smith SM, Raston CL. Entrapment of Chlorella vulgaris cells within graphene oxide layers. RSC Adv 2013;3(22):8180‒3. 链接1

[75] Yan X, Zhou Q, Yu J, Xu T, Deng Y, Tang T, et al. Magnetite nanostructured porous hollow helical microswimmers for targeted delivery. Adv Funct Mater 2015;25(33):5333‒42. 链接1

[76] Yan X, Zhou Q, Vincent M, Deng Y, Yu J, Xu J, et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci Robot 2017;2(12):eaaq1155. 链接1

[77] Santomauro G, Singh AV, Park BW, Mohammadrahimi M, Erkoc P, Goering E, et al. Incorporation of terbium into a microalga leads to magnetotactic swimmers. Adv Biosyst 2018;2(12):1800039. 链接1

[78] Xie S, Jiao N, Tung S, Liu L. Controlled regular locomotion of algae cell microrobots. Biomed Microdevices 2016;18(3):47. 链接1

[79] Weibel DB, Garstecki P, Ryan D, DiLuzio WR, Mayer M, Seto JE, et al. Microoxen: microorganisms to move microscale loads. Proc Natl Acad Sci USA 2005;102(34):11963‒7. 链接1

[80] Yasa O, Erkoc P, Alapan Y, Sitti M. Microalga-powered microswimmers toward active cargo delivery. Adv Mater 2018;30(45):1804130. 链接1

[81] Kerschgens IP, Gademann K. Antibiotic algae by chemical surface engineering. Chembiochem 2018;19(5):439‒43. 链接1

[82] Harris EH. The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use. San Diego: Academic Press; 1989.

[83] Teng XJ, Ng WM, Chong WH, Chan DJC, Mohamud R, Ooi BS, et al. The transport behavior of a biflagellated microswimmer before and after cargo loading. Langmuir 2021;37(30):9192‒201. 链接1

[84] Chia WY, Kok H, Chew KW, Low SS, Show PL. Can algae contribute to the war with Covid-19? 2021;12(1):1226‒37. 链接1

[85] Kumar V, Sharma N, Jaiswal KK, Vlaskin MS, Nanda M, Tripathi MK, et al. Microalgae with a truncated light-harvesting antenna to maximize photosynthetic efficiency and biomass productivity: recent advances and current challenges. Process Biochem 2021;104:83‒91. 链接1

[86] Delalat B, Sheppard VC, Rasi Ghaemi S, Rao S, Prestidge CA, McPhee G, et al. Targeted drug delivery using genetically engineered diatom biosilica. Nat Commun 2015;6(1):8791. 链接1

[87] Centeno-Cerdas C, Jarquín-Cordero M, Chávez MN, Hopfner U, Holmes C, Schmauss D, et al. Development of photosynthetic sutures for the local delivery of oxygen and recombinant growth factors in wounds. Acta Biomater 2018;81:184‒94. 链接1

[88] Alishah Aratboni H, Rafiei N, Garcia-Granados R, Alemzadeh A, Morones-Ramírez JR. Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb Cell Fact 2019;18:178. 链接1

[89] Jeon S, Lim JM, Lee HG, Shin SE, Kang NK, Park YI, et al. Current status and perspectives of genome editing technology for microalgae. Biotechnol Biofuels 2017;10:267. 链接1

[90] Najdenski HM, Gigova LG, Iliev II, Pilarski PS, Lukavský J, Tsvetkova IV, et al. Antibacterial and antifungal activities of selected microalgae and cyanobacteria. Int J Food Sci Technol 2013;48(7):1533‒40. 链接1

[91] Jacob RH, Shanab SM, Shalaby EA. Algal biomass nanoparticles: chemical characteristics, biological actions, and applications. Biomass Convers Biorefin. . . 10.1007/s13399-021-01930-y

相关研究