期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第24卷 第5期 doi: 10.1016/j.eng.2023.02.011

磁控微型机器人的选择性与独立控制——综述

a Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
b School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518057, China
c Shenzhen Research Institutes of City University of Hong Kong, Shenzhen 518057, China

收稿日期: 2021-08-16 修回日期: 2022-09-18 录用日期: 2023-02-09 发布日期: 2023-04-14

下一篇 上一篇

摘要

磁驱动方法具有无线连接和高安全性的特点,是一种常见的微型机器人驱动技术,适用于微流体操作以及医疗微型机器人导航等应用。然而,由于微型机器人或被驱动的目标暴露在同一片磁场环境中,使得选择性地控制单个机器人或多个目标中的某一部分变得具有挑战性。本文回顾了磁场驱动的多微型机器人或多关节微型机器人系统的选择性和独立控制方法的最新进展。这些选择性和独立的控制方法将全局磁场解码为特定配置,用于多个微型机器人的独立驱动。这些方法包括将机器人设计成具有与众不同的物理属性或者在工作空间中的不同位置产生性质各异的磁场。对选定目标的独立控制使多个微型机器人能够有效协作以完成更复杂的操作。本文从一个独特的视角来解释如何在磁场中操纵单个微型机器人以在小尺度机器人中实现高水平的群体智能,这有助于加速微型机器人技术在现实生活中应用的转化和发展。

图片

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] Son D, Gilbert H, Sitti M. Magnetically actuated soft capsule endoscope for fine-needle biopsy. Soft Robot 2020;7(1):10‒21. 链接1

[ 2 ] Polyak B, Friedman G. Magnetic targeting for site-specific drug delivery: applications and clinical potential. Expert Opin Drug Deliv 2009;6(1):53‒70. 链接1

[ 3 ] Wang X, Ho C, Tsatskis Y, Law J, Zhang Z, Zhu M, et al. Intracellular manipulation and measurement with multipole magnetic tweezers. Sci Robot 2019;4(28):eaav6180. 链接1

[ 4 ] Kantaros Y, Johnson BV, Chowdhury S, Cappelleri DJ, Zavlanos MM. Control of magnetic microrobot teams for temporal micromanipulation tasks. IEEE Trans Robot 2018;34(6):1472‒89. 链接1

[ 5 ] Rao KJ, Li F, Meng L, Zheng H, Cai F, Wang W. A force to be reckoned with: a review of synthetic microswimmers powered by ultrasound. Small 2015;11(24):2836‒46. 链接1

[ 6 ] Palima D, Glückstad J. Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces. Laser Photonics Rev 2013;7(4):478‒94. 链接1

[ 7 ] Erdem EY, Chen YM, Mohebbi M, Suh JW, Kovacs GTA, Darling RB, et al. Thermally actuated omnidirectional walking microrobot. J Microelectromech Syst 2010;19(3):433‒42. 链接1

[ 8 ] Karpelson M, Wei GY, Wood RJ. Driving high voltage piezoelectric actuators in microrobotic applications. Sens Actuators A Phys 2012;176:78‒89. 链接1

[ 9 ] Kim Y, Parada GA, Liu S, Zhao X. Ferromagnetic soft continuum robots. Sci Robot 2019;4(33):eaax7329. 链接1

[10] Cui J, Huang TY, Luo Z, Testa P, Gu H, Chen XZ, et al. Nanomagnetic encoding of shape-morphing micromachines. Nature 2019;575(7781):164‒8. 链接1

[11] Xie H, Sun M, Fan X, Lin Z, Chen W, Wang L, et al. Reconfigurable magnetic microrobot swarm: multimode transformation, locomotion, and manipulation. Sci Robot 2019;4(28):eaav8006. 链接1

[12] Mahoney AW, Abbott JJ. Five-degree-of-freedom manipulation of an untethered magnetic device in fluid using a single permanent magnet with application in stomach capsule endoscopy. Int J Robot Res 2015;35(1‒3):129‒47.

[13] Kummer MP, Abbott JJ, Kratochvil BE, Borer R, Sengul A, Nelson BJ. OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans Robot 2010;26(6):1006‒17. 链接1

[14] Yu J, Wang B, Du X, Wang Q, Zhang L. Ultra-extensible ribbon-like magnetic microswarm. Nat Commun 2018;9(1):3260. 链接1

[15] Yu J, Jin D, Chan KF, Wang Q, Yuan K, Zhang L. Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat Commun 2019;10(1):5631. 链接1

[16] Abbott JJ, Diller E, Petruska AJ. Magnetic methods in robotics. Annu Rev Control Robot Auton Syst 2020;3(1):57‒90. 链接1

[17] Yang L, Zhang L. Motion control in magnetic microrobotics: from individual and multiple robots to swarms. Annu Rev Control Robot Auton Syst 2020;4(1):509‒34. 链接1

[18] Cao Q, Han X, Li L. Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic applications: magnet systems and manipulation mechanisms. Lab Chip 2014;14(15):2762‒77. 链接1

[19] Hwang J, Kim J, Choi H. A review of magnetic actuation systems and magnetically actuated guidewire- and catheter-based microrobots for vascular interventions. Intell Serv Robot 2020;13(1):1‒14. 链接1

[20] Alapan Y, Yasa O, Yigit B, Yasa IC, Erkoc P, Sitti M. Microrobotics and microorganisms: biohybrid autonomous cellular robots. Annu Rev Control Robot Auton Syst 2019;2(1):205‒30. 链接1

[21] Ongaro F, Pane S, Scheggi S, Misra S. Design of an electromagnetic setup for independent three-dimensional control of pairs of identical and nonidentical microrobots. IEEE Trans Robot 2019;35(1):174‒83. 链接1

[22] Du X, Zhang M, Yu J, Yang L, Chiu WYP, Zhang L. Design and real-time optimization for a magnetic actuation system with enhanced flexibility. IEEE/ASME Trans Mechatron 2020;26(3):1524‒35. 链接1

[23] Cao Q, Fan Q, Chen Q, Liu C, Han X, Li L. Recent advances in manipulation of micro- and nano-objects with magnetic fields at small scales. Mater Horiz 2020;7(3):638‒66. 链接1

[24] Xie H, Sun M, Fan X, Lin Z, Chen W, Wang L, et al. Reconfigurable magnetic microrobot swarm Multimode transformation, locomotion, and manipulation. Sci Robot 2019;4(28):eaav8006. 链接1

[25] Yu J, Yang L, Zhang L. Pattern generation and motion control of a vortex-like paramagnetic nanoparticle swarm. Int J Robot Res 2018;37(8):912‒30. 链接1

[26] Salehizadeh M, Diller E. Three-dimensional independent control of multiple magnetic microrobots via inter-agent forces. Int J Robot Res 2020;39(12):1377‒96. 链接1

[27] Zhang J, Salehizadeh M, Diller E. Parallel pick and place using two independent untethered mobile magnetic microgrippers. In: Proceedings of 2018 IEEE International Conference on Robotics and Automation (ICRA); 2018 May 21‒25; Brisbane, QLD, Australia. IEEE; 2019. p. 123‒8. 链接1

[28] Floyd S, Diller E, Pawashe C, Sitti M. Control methodologies for a heterogeneous group of untethered magnetic micro-robots. Int J Robot Res 2011;30(13):1553‒65. 链接1

[29] Mandal P, Chopra V, Ghosh A. Independent positioning of magnetic nanomotors. ACS Nano 2015;9(5):4717‒25. 链接1

[30] Tottori S, Zhang L, Peyer KE, Nelson BJ. Assembly, disassembly, and anomalous propulsion of microscopic helices. Nano Lett 2013;13(9):4263‒8. 链接1

[31] Diller E, Floyd S, Pawashe C, Sitti M. Control of multiple heterogeneous magnetic micro-robots on non-specialized surfaces. In: Proceedings of 2011 IEEE International Conference on Robotics and Automation; 2011 May 9‒13; Shanghai, China. IEEE; 2011. p. 115‒20. 链接1

[32] Diller E, Floyd S, Pawashe C, Sitti M. Control of multiple heterogeneous magnetic microrobots in two dimensions on nonspecialized surfaces. IEEE Trans Robot 2012;28(1):172‒82. 链接1

[33] Diller E, Miyashita S, Sitti M. Magnetic hysteresis for multi-state addressable magnetic microrobotic control. In: Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2012 Oct 7‒12; Vilamoura-Algarve, Portugal. IEEE. 2012. p. 2325‒31. 链接1

[34] Diller E, Miyashita S, Sitti M. Remotely addressable magnetic composite micropumps. RSC Advances 2012;2(9):3850‒6. 链接1

[35] Choi K, Jang G, Jeon S, Nam J. Capsule-type magnetic microrobot actuated by an external magnetic field for selective drug delivery in human blood vessels. IEEE Trans Magn 2014;50(11):1‒4. 链接1

[36] Lee W, Nam J, Jang B, Jang G. Selective motion control of a crawling magnetic robot system for wireless self-expandable stent delivery in narrowed tubular environments. IEEE Trans Ind Electron 2017;64(2):1636‒44. 链接1

[37] Vartholomeos P, Akhavan-Sharif MR, Dupont PE. Motion planning for multiple millimeter-scale magnetic capsules in a fluid environment. In: Proceedings of 2012 IEEE International Conference on Robotics and Automation; 2012 May 14‒18; Saint Paul, MN, USA. IEEE; 2012. p. 1927‒32. 链接1

[38] Denise W, Wang J, Edward S, Vijay K. Control of multiple magnetic micro robots. In: ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference; 2015 Aug 2‒5; Boston, Massachusetts, USA. ASME; 2015 p. V004T09A041.

[39] Wong D, Steager EB, Kumar V. Independent control of identical magnetic robots in a plane. IEEE Robot Autom Lett 2016;1(1):554‒61. 链接1

[40] Mellal L, Folio D, Belharet K, Ferreira A. Optimal control of multiple magnetic microbeads navigating in microfluidic channels. In: Proceedings of 2016 IEEE International Conference on Robotics and Automation (ICRA); 2016 May 16‒21; Stockholm, Sweden. IEEE; 2016. p. 1921‒6. 链接1

[41] Diller E, Giltinan J, Sitti M. Independent control of multiple magnetic microrobots in three dimensions. Int J Robot Res 2013;32(5):614‒31. 链接1

[42] Kawaguchi T, Inoue Y, Ikeuchi M, Ikuta K. Independent actuation and master‒slave control of multiple micro magnetic actuators. In: Proceedings of 2018 IEEEMicro Electro Mechanical Systems MEMS); 2018 Jan 21‒25; Belfast, UK. IEEE; 2018. p. 190‒3. 链接1

[43] Shahrokhi S, Mahadev A, Becker AT. Algorithms for shaping a particle swarm with a shared input by exploiting non-slip wall contacts. In: Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2017 Sep 24‒28; Vancouver, BC, Canada. IEEE; 2017. p. 4304‒11. 链接1

[44] Becker A, Felfoul O, Dupont PE. Simultaneously powering and controlling many actuators with a clinical MRI scanner. In: Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2014 Sep 14‒18; Chicago, IL, USA. IEEE; 2014. p. 2017‒23. 链接1

[45] Denasi A, Misra S. Independent and leader‒follower control for two magnetic micro-agents. IEEE Robot Autom Lett 2017;3(1):218‒25. 链接1

[46] Shahrokhi S, Shi J, Isichei B, Becker AT. Exploiting nonslip wall contacts to position two particles using the same control input. IEEE Trans Robot 2019;35(3):577‒88. 链接1

[47] EqtamiA, FelfoulO, DupontPE. MRI-powered closed-loop control for multiple magnetic capsules. In: Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2014 Sep 14‒18; Chicago, IL, USA. IEEE; 2014. p. 3536‒42. 链接1

[48] Becker A, Ou Y, Kim P, Kim MJ, Julius A. Feedback control of many magnetized: tetrahymena pyriformis cells by exploiting phase inhomogeneity. In: Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2013 Nov 3‒7; Tokyo, Japan. IEEE; 2013. p. 3317‒23. 链接1

[49] Zhang J, Jain P, Diller E. Independent control of two millimeter-scale soft-bodied magnetic robotic swimmers. In: Proceedings of 2016 IEEE International Conference on Robotics and Automation (ICRA); 2016 May 16‒21; Stockholm, Sweden. IEEE; 2016. p. 1933‒8. 链接1

[50] Rahmer J, Stehning C, Gleich B. Spatially selective remote magnetic actuation of identical helical micromachines. Sci Robot 2017;2(3):eaal2845. 链接1

[51] Petruska AJ, Nelson BJ. Minimum bounds on the number of electromagnets required for remote magnetic manipulation. IEEE Trans Robot 2015;31(3):714‒22. 链接1

[52] Salmanipour S, Diller E. Eight-degrees-of-freedom remote actuation of small magnetic mechanisms. In: Proceedings of 2018 IEEE International Conference on Robotics and Automation (ICRA); 2018 May 21‒25; Brisbane, QLD, Australia. IEEE; 2018. p. 3608‒13. 链接1

[53] Salmanipour S, Youssefi O, Diller ED. Design of multi-degrees-of-freedom microrobots driven by homogeneous quasi-static magnetic fields. IEEE Trans Robot 2020;37(1):246‒56. 链接1

[54] Inoue T, Iwatani K, Shimoyama I, Miura H. Micromanipulation using magnetic field. In: Proceedings of 1995 IEEE International Conference on Robotics and Automation; 1995 May 21‒27; Nagoya, Japan. IEEE; 1995. p. 679‒84. 链接1

[55] Lee CS, Lee H, Westervelt RM. Microelectromagnets for the control of magnetic nanoparticles. Appl Phys Lett 2001;79(20):3308‒10. 链接1

[56] Pelrine R, Wong-Foy A, McCoy B, Holeman D, Mahoney R, Myers G, et al. Diamagnetically levitated robots; an approach to massively parallel robotic systems with unusual motion properties. In: Proceedings of 2012 IEEE International Conference on Robotics and Automation; 2012 May 14‒18; Saint Paul, MN, USA. IEEE; 2012. p. 739‒44. 链接1

[57] Cappelleri D, Efthymiou D, Goswami A, Vitoroulis N, Zavlanos M. Towards mobile microrobot swarms for additive micromanufacturing. Int J Adv Robot Syst 2014;11(9). 链接1

[58] Chowdhury S, Jing W, Cappelleri DJ. Towards independent control of multiple magnetic mobile microrobots. Micromachines 2015;7(1):3. 链接1

[59] Chowdhury S, Jing W, Cappelleri DJ. Designing local magnetic fields and path planning for independent actuation of multiple mobile microrobots. J Microbio Robot 2017;12(1‒4):21‒31.

[60] Steager E, Wong D, Wang J, Arora S, Kumar V. Control of multiple microrobots with multiscale magnetic field superposition. In: Proceedings of 2017 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS); 2017 Jul 17‒21; Montreal, QC, Canada. IEEE; 2017. p. 1‒6. 链接1

[61] Chakravarthula PN, Shekhar S, Ananthasuresh GK. Attachment, detachment, and navigation of small robots using local magnetic fields. In: Proceedings of 2019 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS); 2019 Jul 1‒5; Helsinki, Finland. IEEE; 2019. p. 1‒6. 链接1

[62] Yu W, Lin H, Wang Y, He X, Chen N, Sun K, et al. A ferrobotic system for automated microfluidic logistics. Sci Robot 2020;5(39):eaba4411. 链接1

[63] Pawashe C, Floyd S, Sitti M. Multiple magnetic microrobot control using electrostatic anchoring. Appl Phys Lett 2009;94(16):164108. 链接1

[64] Diller E, Pawashe C, Floyd S, Sitti M. Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2D reconfigurable micro-systems. Int J Robot Res 2011;30(14):1667‒80. 链接1

[65] Li X, Lu C, Song Z, Ding W, Zhang XP. Planar magnetic actuation for soft and rigid robots using a scalable electromagnet array. IEEE Robot Autom Lett 2022;7(4):9264‒70. 链接1

[66] Chowdhury S, Jing WM, Jaron P, Cappelleri DJ. Path planning and control for autonomous navigation of single and multiple magnetic mobile microrobots. In: Proceedings of ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference; 2015 Aug 2‒5; Boston, Massachusetts, USA. ASME; 2015 p. V004T09A040. 链接1

[67] Sagar Chowdhury WJ, CappelleriDavid J.. Independent actuation of multiple microrobots using localized magnetic fields. In: Proceedings of 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS); 2016 Jul 18‒22; Paris, France. IEEE; 2016. p. 1‒6. 链接1

[68] Lapuník V, Juřík M, Vítek M, Kuthan J, Mach F. Magnetically assembled electronic digital materials. In: Proceedings of 2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS); 2022 Jul 25‒29; Toronto, ON, Canada. IEEE; 2022. p. 1‒6. 链接1

[69] Johnson BV, Chowdhury S, Cappelleri DJ. Local magnetic field design and characterization for independent closed-loop control of multiple mobile microrobots. IEEE/ASME Trans Mechatron 2020;25(2):526‒34. 链接1

[70] Fan X, Dong X, Karacakol AC, Xie H, Sitti M. Reconfigurable multifunctional ferrofluid droplet robots. Proc Natl Acad Sci USA 2020;117(45):27916‒26. 链接1

[71] Zhang J, Wang X, Wang Z, Pan S, Yi B, Ai L, et al. Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface. Nat Commun 2021;12(1):7136. 链接1

[72] Torres NA, Popa DO. Cooperative control of multiple untethered magnetic microrobots using a single magnetic field source. In: Proceedings of 2015 IEEE International Conference on Automation Science and Engineering (CASE); 2015 Aug 24‒28; Gothenburg, Sweden. IEEE; 2015. p. 1608‒13. 链接1

[73] Torres NA, Ruggeri S, Popa DO. Untethered microrobots actuated with focused permanent magnet field. In: Proceedings of ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference; 2014 Aug 17‒20; Buffalo, New York, USA. ASME; 2014. p. V004T09A024. 链接1

[74] Nelson ND, Abbott JJ. Generating two independent rotating magnetic fields with a single magnetic dipole for the propulsion of untethered magnetic devices. In: Proceedings of 2015 IEEE International Conference on Robotics and Automation (ICRA); 2015 May 26‒30; Seattle, WA, USA. IEEE; 2015. p. 4056‒61. 链接1

[75] Di Natali C, Buzzi J, Garbin N, Beccani M, Valdastri P. Closed-loop control of local magnetic actuation for robotic surgical instruments. IEEE Trans Robot 2015;31(1):143‒56. 链接1

[76] Simi M, Pickens R, Menciassi A, Herrell SD, Valdastri P. Fine tilt tuning of a laparoscopic camera by local magnetic actuation: two-port nephrectomy experience on human cadavers. Surg Innov 2013;20(4):385‒94d. 链接1

[77] Natali CD, Ranzani T, Simi M, Menciassi A, Valdastri P. Trans-abdominal active magnetic linkage for robotic surgery: concept definition and model assessment. In: Proceedings of 2012 IEEE International Conference on Robotics and Automation; 2012 May 14‒18; Saint Paul, MN, USA. IEEE; 2012. p. 695‒700. 链接1

[78] Isitman O, Kandemir H, Alcan G, Cenev Z, Zhou Q. Simultaneous and independent micromanipulation of two identical particles with robotic electromagnetic needles. In: Proceedings of International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS); 2022 Jul 25‒29; Toronto, ON, Canada. IEEE; 2022. p. 1‒6. 链接1

[79] McDonald K, Rendos A, Woodman S, Brown KA, Ranzani T. Magnetorheological fluid‐based flow control for soft robots. Adv Intell Syst 2020;2(11):2000139. 链接1

[80] Leps T, Glick PE, Ruffatto Iii D, Parness A, Tolley MT, Hartzell C. A low-power, jamming, magnetorheological valve using electropermanent magnets suitable for distributed control in soft robots. Smart Mater Struct 2020;29(10): 105025. 链接1

[81] Amoudruz L, Koumoutsakos P. Independent control and path planning of microswimmers with a uniform magnetic field. Adv Intell Syst 2021;4(3):2100183. 链接1

[82] Ishiyama K, Sendoh M, Arai KI. Magnetic micromachines for medical applications. J Magn Magn Mater 2002;242:41‒6. 链接1

[83] Sendoh M, Ishiyama K, Arai KI. Direction and individual control of magnetic micromachine. IEEE Trans Magn 2002;38(5):3356‒8. 链接1

[84] Vach PJ, Klumpp S, Faivre D. Steering magnetic micropropellers along independent trajectories. J Phys D Appl Phys 2016;49(6):065003. 链接1

[85] Mahoney AW, Nelson ND, Peyer KE, Nelson BJ, Abbott JJ. Behavior of rotating magnetic microrobots above the step-out frequency with application to control of multi-microrobot systems. Appl Phys Lett 2014;104(14):144101. 链接1

[86] Howell TA, Osting B, Abbott JJ. Sorting rotating micromachines by variations in their magnetic properties. Phys Rev Appl 2018;9(5):054021. 链接1

[87] Cheang UK, Lee K, Julius AA, Kim MJ. Multiple-robot drug delivery strategy through coordinated teams of microswimmers. Appl Phys Lett 2014;105(8):083705. 链接1

[88] Frutiger DR, Vollmers K, Kratochvil BE, Nelson BJ. Small, fast, and under control: wireless resonant magnetic micro-agents. Int J Robot Res 2009;29(5):613‒36. 链接1

[89] Kratochvil BE, Frutiger D, Vollmers K, Nelson BJ. Visual servoing and characterization of resonant magnetic actuators for decoupled locomotion of multiple untethered mobile microrobots. In: Proceedings of2009 IEEE International Conference on Robotics and Automation; 2009 May 12‒17; Kobe, Japan. IEEE; 2009. p. 2859‒64. 链接1

[90] Khalil ISM, Tabak AF, Hamed Y, Tawakol M, Klingner A, Gohary NE, et al. Independent actuation of two-tailed microrobots. IEEE Robot Autom Lett 2018;3(3):1703‒10. 链接1

[91] Tottori S, Sugita N, Kometani R, Ishihara S, Mitsuishi M. Selective control method for multiple magnetic helical microrobots. J Micro Nano Mech 2011;6(3‒4):89‒95.

[92] Narayanamoorthi R, Juliet AV, Chokkalingam B. Frequency splitting-based wireless power transfer and simultaneous propulsion generation to multiple micro-robots. IEEE Sens J 2018;18(13):5566‒75. 链接1

[93] Boyvat M, Koh JS, Wood RJ. Addressable wireless actuation for multijoint folding robots and devices. Sci Robot 2017;2(8):eaan1544. 链接1

[94] Novelino LS, Ze Q, Wu S, Paulino GH, Zhao R. Untethered control of functional origami microrobots with distributed actuation. Proc Natl Acad Sci USA 2020;117(39):24096‒101. 链接1

[95] Mao G, Drack M, Karami-Mosammam M, Wirthl D, Stockinger T, Schwödiauer R, et al. Soft electromagnetic actuators. Sci Adv 2020;6(26):eabc0251. 链接1

[96] Libanori A, Chen G, Zhao X, Zhou Y, Chen J. Smart textiles for personalized healthcare. Nat Electron 2022;5(3):142‒56. 链接1

[97] Chen G, Xiao X, Zhao X, Tat T, Bick M, Chen J. Electronic textiles for wearable point-of-care systems. Chem Rev 2022;122(3):3259‒91. 链接1

[98] Wang M, Song S, Liu J, Meng MQH. Multipoint simultaneous tracking of wireless capsule endoscope using magnetic sensor array. IEEE Trans Instrum Meas 2021;70:1‒10. 链接1

[99] Khalesi R, Yousefi M, Nejat Pishkenari H, Vossoughi G. Robust independent and simultaneous position control of multiple magnetic microrobots by sliding mode controller. Mechatronics 2022;84:102776. 链接1

[100] Pawashe C, Floyd S, Sitti M. Modeling and experimental characterization of an untethered magnetic micro-robot. Int J Robot Res 2009;28(8):1077‒94. 链接1

[101] Floyd S, Pawashe C, Sitti M. Two-dimensional contact and noncontact micromanipulation in liquid using an untethered mobile magnetic microrobot. IEEE Trans Robot 2009;25(6):1332‒42. 链接1

[102] Yang LD, Du XZ, Yu E, Jin DD, Zhang L. DeltaMag: an electromagnetic manipulation system with parallel mobile coils. In: Proceedings of 2019 International Conference on Robotics and Automation (ICRA); 2019 May 20‒24; Montreal, QC, Canada. IEEE; 2019. p. 9814‒20. 链接1

[103] Li C, Lau GC, Yuan H, Aggarwal A, Dominguez VL, Liu S, et al. Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields. Sci Robot 2020;5(49):eabb9822. 链接1

[104] Xu L, Gong D, Chen K, Cai J, Zhang W. Acoustic levitation applied for reducing undesired lateral drift of magnetic helical microrobots. J Appl Phys 2020;128(18):184703. 链接1

[105] Wang H, Rubenstein M. Autonomous mobile robot with independent control and externally driven actuation. In: Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2016 Oct 9‒14; Daejeon, Republic of Korea. IEEE; 2016. p. 3647‒52. 链接1

相关研究