期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第24卷 第5期 doi: 10.1016/j.eng.2023.02.012

解决一维材料黏附行为的实验方法综述

a Department of Computing Science, University of Oldenburg, Oldenburg D-26129, Germany

b School of Physics and Electronics, Central South University, Changsha 410083, China

c School of Mechanical and Mining Engineering, The University of Queensland, QLD 4072, Australia

收稿日期: 2021-08-15 修回日期: 2022-12-31 录用日期: 2023-02-09 发布日期: 2023-04-18

下一篇 上一篇

摘要

一维(1D)材料(如纳米管和纳米线)的黏附行为在集成一维组件的新型设备以及基于一维阵列的仿生黏合剂的有效制造、功能和可靠性中起着决定性的作用。本文总结并批判性地评估了最近的实验技术,旨在表征由一维材料形成的界面(包括当这些材料与基底或相邻的一维材料接触时)的黏附行为。讨论了
一维材料表面的构象以及相关的多粗糙体接触的发生,并探讨了界面附着和分离过程中黏附和摩擦的耦合。考虑了在纳米复合材料中使用一维材料作为增强剂以及相关的界面表征技术。仔细研究了样品制备和黏附力测试过程中存在的环境条件影响一维界面相互作用并最终改变一维材料的黏附行为的可能性。最后,简要介绍了当前的挑战和未来的方向,包括对测试环境以及通过表面改性改变黏附力的系统的研究。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

参考文献

[ 1 ] Wang S, Shan Z, Huang H. The mechanical properties of nanowires. Adv Sci 2017;4(4):1600332. 链接1

[ 2 ] Nasr Esfahani M, Alaca BE. A review on size-dependent mechanical properties of nanowires. Adv Eng Mater 2019;21(8):1900192. 链接1

[ 3 ] Weber WM, Heinzig A, Trommer J, Martin D, Grube M, Mikolajick T. Reconfigurable nanowire electronics—a review. Solid State Electron 2014;102:12‒24. 链接1

[ 4 ] Joyce HJ, Boland JL, Davies CL, Baig SA, Johnston MB. A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy. Semicond Sci Technol 2016;31(10):103003. 链接1

[ 5 ] Zhou C, Kong J, Dai H. Intrinsic electrical properties of individual single-walled carbon nanotubes with small band gaps. Phys Rev Lett 2000;84(24):5604‒7. 链接1

[ 6 ] LaPierre RR, Robson M, Azizur-Rahman KM, Kuyanov P. A review of III‒V nanowire infrared photodetectors and sensors. J Phys D Appl Phys 2017;50(12):123001. 链接1

[ 7 ] Couteau C, Larrue A, Wilhelm C, Soci C. Nanowire lasers. Nanophotonics 2015;4(1):90‒107. 链接1

[ 8 ] Kang C, Maeng IH, Oh SJ, Lim SC, An KH, Lee YH, et al. Terahertz optical and electrical properties of hydrogen-functionalized carbon nanotubes. Phys Rev B Condens Matter Mater Phys 2007;75(8):085410. 链接1

[ 9 ] Espinosa HD, Bernal RA, Minary-Jolandan M. A review of mechanical and electromechanical properties of piezoelectric nanowires. Adv Mater 2012;24(34):4656‒75. 链接1

[10] Staňo M, Fruchart O. Chapter 3—magnetic nanowires and nanotubes. Handbook Magnet Mater 2018;27:155‒267. 链接1

[11] Kumar M, Ando Y. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 2010;10(6):3739‒58. 链接1

[12] Arora N, Sharma NN. Arc discharge synthesis of carbon nanotubes: comprehensive review. Diamond Related Materials 2014;50:135‒50. 链接1

[13] Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, et al. Methods for carbon nanotubes synthesis—review. J Mater Chem 2011;21(40):15872‒84. 链接1

[14] Kim JH, Pham TV, Hwang JH, Kim CS, Kim MJ. Boron nitride nanotubes: synthesis and applications. Nano Converg 2018;5(1):17. 链接1

[15] Mead JL, Xie H, Wang S, Huang H. Enhanced adhesion of ZnO nanowires during in situ scanning electron microscope peeling. Nanoscale 2018;10(7):3410‒20. 链接1

[16] Wang X, Song J, Liu J, Wang ZL. Direct-current nanogenerator driven by ultrasonic waves. Science 2007;316(5821):102‒5. 链接1

[17] Wu W, Wen X, Wang ZL. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 2013;340(6135):952‒7. 链接1

[18] Kim J, Oh SD, Kim JH, Shin DH, Kim S, Choi SH. Graphene/Si-nanowire heterostructure molecular sensors. Sci Rep 2014;4(1):5384. 链接1

[19] Han H, Kim J, Shin HS, Song JY, Lee W. Air-bridged OHMIC contact on vertically aligned Si nanowire arrays: application to molecule sensors. Adv Mater 2012;24(17):2284‒8. 链接1

[20] Kang S, Kim T, Cho S, Lee Y, Choe A, Walker B, et al. Capillary printing of highly aligned silver nanowire transparent electrodes for high-performance optoelectronic devices. Nano Lett 2015;15(12):7933‒42. 链接1

[21] Gluschke JG, Seidl J, Lyttleton RW, Carrad DJ, Cochrane JW, Lehmann S, et al. Using ultrathin parylene films as an organic gate insulator in nanowire fieldeffect transistors. Nano Lett 2018;18(7):4431‒9. 链接1

[22] Gluschke JG, Seidl J, Burke AM, Lyttleton RW, Carrad DJ, Ullah AR, et al. Achieving short high-quality gate-all-around structures for horizontal nanowire field-effect transistors. Nanotechnology 2019;30(6):064001. 链接1

[23] Li M, Bhiladvala RB, Morrow TJ, Sioss JA, Lew KK, Redwing JM, et al. Bottom-up assembly of large-area nanowire resonator arrays. Nat Nanotechnol 2008;3(2):88‒92. 链接1

[24] Lee Y, Oh JY, Kim TR, Gu X, Kim Y, Wang GN, et al. Deformable organic nanowire field-effect transistors. Adv Mater 2018;30(7):1704401. 链接1

[25] Otnes G, Borgström MT. Towards high efficiency nanowire solar cells. Nano Today 2017;12:31‒45. 链接1

[26] Loh OY, Espinosa HD. Nanoelectromechanical contact switches. Nat Nanotechnol 2012;7(5):283‒95. 链接1

[27] Mead JL, Klauser W, von Kleist-Retzow F, Fatikow S. Advances in assembled micro- and nanoscale mechanical contact probes. Front Mech Eng 2022;9:87. 链接1

[28] Kwiat M, Cohen S, Pevzner A, Patolsky F. Large-scale ordered 1D-nanomaterials arrays: assembly or not? Nano Today 2013;8(6):677‒94. 链接1

[29] Fan Z, Razavi H, Do JW, Moriwaki A, Ergen O, Chueh YL, et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat Mater 2009;8(8):648‒53. 链接1

[30] Zhou M, Tian Y, Zeng H, Pesika N, Israelachvili J. Clumping criteria of vertical nanofibers on surfaces. Adv Mater Interfaces 2015;2(5):1400466. 链接1

[31] Pevzner A, Engel Y, Elnathan R, Ducobni T, Ben-Ishai M, Reddy K, et al. Knocking down highly-ordered large-scale nanowire arrays. Nano Lett 2010;10(4):1202‒8. 链接1

[32] Yao J, Yan H, Lieber CM. A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat Nanotechnol 2013;8(5):329‒35. 链接1

[33] Fan Z, Ho JC, Takahashi T, Yerushalmi R, Takei K, Ford AC, et al. Toward the development of printable nanowire electronics and sensors. Adv Mater 2009;21(37):3730‒43. 链接1

[34] Weiss NO, Duan X. Nanoscale devices: untangling nanowire assembly. Nat Nanotechnol 2013;8(5):312‒3. 链接1

[35] Akita S, Nishijima H, Kishida T, Nakayama Y. Influence of force acting on side face of carbon nanotube in atomic force microscopy. Jpn J Appl Phys 2000;39:3724. 链接1

[36] Akita S, Nishijima H, Nakayama Y, Tokumasu F, Takeyasu K. Carbon nanotube tips for a scanning probe microscope: their fabrication and properties. J Phys D Appl Phys 1999;32(9):1044‒8. 链接1

[37] Feng XL, Matheny MH, Zorman CA, Mehregany M, Roukes ML. Low voltage nanoelectromechanical switches based on silicon carbide nanowires. Nano Lett 2010;10(8):2891‒6. 链接1

[38] Hussain MM, Song J. Contact materials for nanowire devices and nanoelectromechanical switches. MRS Bull 2011;36(2):106‒11. 链接1

[39] Jasulaneca L, Livshits AI, Meija R, Kosmaca J, Sondors R, Ramma MM, et al. Fabrication and characterization of double- and single-clamped CuO nanowire based nanoelectromechanical switches. Nanomaterials 2021;11(1):117. 链接1

[40] Hardin GR, Zhang Y, Fincher CD, Pharr M. Interfacial fracture of nanowire electrodes of lithium-ion batteries. JOM 2017;69(9):1519‒23. 链接1

[41] Hu J, Yang L, Shin MW. Mechanism and thermal effect of delamination in light-emitting diode packages. Microelectronics J 2007;38(2):157‒63. 链接1

[42] Tay AAO, Lin TY. Effects of moisture and delamination on cracking of plastic IC packages during solder reflow. In: Proceedings of 46th Electronic Components and Technology Conference; 1996 May 28‒31; Orlando, FL, USA. IEEE; 1996. p. 777‒82. 链接1

[43] Liu Z, Xu J, Chen D, Shen G. Flexible electronics based on inorganic nanowires. Chem Soc Rev 2015;44(1):161‒92. 链接1

[44] Hu S, Xia Z, Dai L. Advanced gecko-foot-mimetic dry adhesives based on carbon nanotubes. Nanoscale 2013;5(2):475‒86. 链接1

[45] Gao H, Wang X, Yao H, Gorb S, Arzt E. Mechanics of hierarchical adhesion structures of geckos. Mech Mater 2005;37(2):275‒85. 链接1

[46] Yurdumakan B, Raravikar NR, Ajayan PM, Dhinojwala A. Synthetic gecko foot-hairs from multiwalled carbon nanotubes. Chem Commun 2005;30:3799‒801. 链接1

[47] Chen B, Goldberg Oppenheimer P, Shean TAV, Wirth CT, Hofmann S, Robertson J. Adhesive properties of gecko-inspired mimetic via micropatterned carbon nanotube forests. J Phys Chem C 2012;116(37):20047‒53. 链接1

[48] Chen B, Zhong G, Oppenheimer PG, Zhang C, Tornatzky H, Esconjauregui S, et al. Influence of packing density and surface roughness of vertically-aligned carbon nanotubes on adhesive properties of gecko-inspired mimetics. ACS Appl Mater Interfaces 2015;7(6):3626‒32. 链接1

[49] Zhao Y, Tong T, Delzeit L, Kashani A, Meyyappan M, Majumdar A. Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive. J Vac Sci Technol B 2006;24(1):331‒5. 链接1

[50] Qu L, Dai L, Stone M, Xia Z, Wang ZL. Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 2008;322(5899):238‒42. 链接1

[51] Zhou M, Liu K, Wan J, Li X, Jiang K, Zeng H, et al. Anisotropic interfacial friction of inclined multiwall carbon nanotube array surface. Carbon 2012;50(15):5372‒9. 链接1

[52] Wirth CT, Hofmann S, Robertson J. Surface properties of vertically aligned carbon nanotube arrays. Diamond Related Materials 2008;17(7):1518‒24. 链接1

[53] Ge L, Sethi S, Ci L, Ajayan PM, Dhinojwala A. Carbon nanotube-based synthetic gecko tapes. Proc Natl Acad Sci USA 2007;104(26):10792‒5. 链接1

[54] Qu L, Dai L. Gecko-foot-mimetic aligned single-walled carbon nanotube dry adhesives with unique electrical and thermal properties. Adv Mater 2007;19(22):3844‒9. 链接1

[55] Cui Y, Ju Y, Xu B, Wang P, Kojima N, Ichioka K, et al. Mimicking a gecko’s foot with strong adhesive strength based on a spinnable vertically aligned carbon nanotube array. RSC Adv 2014;4(18):9056‒60. 链接1

[56] Tsai PC, Jeng YR, Mao CP, Wu KT, Hong FCN. Effects of surface morphology, size effect and wettability on interfacial adhesion of carbon nanotube arrays. Thin Solid Films 2013;545:401‒7. 链接1

[57] Schaber CF, Heinlein T, Keeley G, Schneider JJ, Gorb SN. Tribological properties of vertically aligned carbon nanotube arrays. Carbon 2015;94:396‒404. 链接1

[58] Xu M, Du F, Ganguli S, Roy A, Dai L. Carbon nanotube dry adhesives with temperature-enhanced adhesion over a large temperature range. Nat Commun 2016;7(1):13450. 链接1

[59] Rong Z, Zhou Y, Chen B, Robertson J, Federle W, Hofmann S, et al. Bio-inspired hierarchical polymer fiber‒carbon nanotube adhesives. Adv Mater 2014;26(9):1456‒61. 链接1

[60] Kustandi TS, Samper VD, Ng WS, Chong AS, Gao H. Fabrication of a gecko-like hierarchical fibril array using a bonded porous alumina template. J Micromech Microeng 2007;17(10):N75‒81. 链接1

[61] Kausar A, Rafique I, Muhammad B. Review of applications of polymer/carbon nanotubes and epoxy/CNT composites. Polym Plast Technol Eng 2016;55(11):1167‒91. 链接1

[62] Byrne MT, Gun’ko YK. Recent advances in research on carbon nanotube‒polymer composites. Adv Mater 2010;22(15):1672‒88. 链接1

[63] Liu Y, Kumar S. Polymer/carbon nanotube nano composite fibers—a review. ACS Appl Mater Interfaces 2014;6(9):6069‒87. 链接1

[64] Mohd Nurazzi N, Asyraf MRM, Khalina A, Abdullah N, Sabaruddin FA, Kamarudin SH, et al. Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: an overview. Polymers 2021;13(7):1047. 链接1

[65] Bakshi SR, Lahiri D, Agarwal A. Carbon nanotube reinforced metal matrix composites—a review. Int Mater Rev 2010;55(1):41‒64. 链接1

[66] Srinivasan V, Kunjiappan S, Palanisamy P. A brief review of carbon nanotube reinforced metal matrix composites for aerospace and defense applications. Int Nano Lett 2021;11(4):321‒45. 链接1

[67] Desai AV, Haque MA. Mechanics of the interface for carbon nanotube‒polymer composites. Thin walled Struct 2005;43(11):1787‒803. 链接1

[68] Pramanik C, Nepal D, Nathanson M, Gissinger JR, Garley A, Berry RJ, et al. Molecular engineering of interphases in polymer/carbon nanotube composites to reach the limits of mechanical performance. Compos Sci Technol 2018;166:86‒94. 链接1

[69] Brogly PM. Forces involved in adhesion. Handbook of adhesion technology. In: da Silva LFM, Öchsner A, Adams RD, editors. Heidelberg: Springer Cam 2011:39‒63. 链接1

[70] Ma ZS, Wang Y, Huang YL, Zhou ZF, Zhou YC, Zheng W, et al. XPS quantification of the hetero-junction interface energy. Appl Surf Sci 2013;265:71‒7. 链接1

[71] Liu X, Zhang X, Bo M, Li L, Tian H, Nie Y, et al. Coordination-resolved electron spectrometrics. Chem Rev 2015;115(14):6746‒810. 链接1

[72] Volinsky AA, Moody NR, Gerberich WW. Interfacial toughness measurements for thin films on substrates. Acta Mater 2002;50(3):441‒66. 链接1

[73] Packham DE. Theories of fundamental adhesion. Handbook of adhesion technology. In: da Silva LFM, Öchsner A, Adams RD, editors. Heidelberg: Springer Cam 2011:9‒38. 链接1

[74] Zhao Y, Chen X, Park C, Fay CC, Stupkiewicz S, Ke C. Mechanical deformations of boron nitride nanotubes in crossed junctions. J Appl Phys 2014;115(16):164305. 链接1

[75] Ke C, Zheng M, Bae IT, Zhou G. Adhesion-driven buckling of single-walled carbon nanotube bundles. J Appl Phys 2010;107(10):104305. 链接1

[76] Mead JL, Wang S, Zimmermann S, Huang H. Interfacial adhesion of ZnO nanowires on a Si substrate in air. Nanoscale 2020;12(15):8237‒47. 链接1

[77] Strus MC, Cano CI, Byron Pipes R, Nguyen CV, Raman A. Interfacial energy between carbon nanotubes and polymers measured from nanoscale peel tests in the atomic force microscope. Compos Sci Technol 2009;69(10):1580‒6. 链接1

[78] Fischer-Cripps AC. Introduction to contact mechanics. New York City: Springer; 2000.

[79] Johnson KL, Kendall K, Roberts AD. Surface energy and the contact of elastic solids. Proc R Soc Lond A Math Phys Sci 1971;324(1558):301‒13. 链接1

[80] Derjaguin BV, Muller VM, Toporov YP. Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 1975;53(2):314‒26. 链接1

[81] Maugis D. Adhesion of spheres: the JKR-DMT transition using a dugdale model. J Colloid Interface Sci 1992;150(1):243‒69. 链接1

[82] Tabor D. Surface forces and surface interactions. J Colloid Interface Sci 1977;58(1):2‒13. 链接1

[83] Kendall K. Thin-film peeling-the elastic term. J Phys D Appl Phys 1975;8(13):1449‒52. 链接1

[84] Gu Z, Li S, Zhang F, Wang S. Understanding surface adhesion in nature: a peeling model. Adv Sci 2016;3(7):1500327. 链接1

[85] Dequesnes M, Rotkin SV, Aluru NR. Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches. Nanotechnology 2002;13(1):120‒31. 链接1

[86] Lennard-Jones JE. Perturbation problems in quantum mechanics. Proc R Soc Lond A Contain Pap Math Phys Character 1930;129(811):598‒615. 链接1

[87] Zhao J, Jiang JW, Jia Y, Guo W, Rabczuk T. A theoretical analysis of cohesive energy between carbon nanotubes, graphene and substrates. Carbon 2013;57:108‒19. 链接1

[88] Zhao J, Jia Y, Wei N, Rabczuk T. Binding energy and mechanical stability of two parallel and crossing carbon nanotubes. Proc Royal Soc Math Phys Eng Sci 2015;471(2180):20150229. 链接1

[89] Chen Y, Ding D, Zhu C, Zhao J, Rabczuk T. Size- and edge-effect cohesive energy and shear strength between graphene, carbon nanotubes and nanofibers: continuum modeling and molecular dynamics simulations. Compos Struct 2019;208:150‒67. 链接1

[90] Zhao J, Lu L, Rabczuk T. Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines. J Chem Phys 2014;140(20):204704. 链接1

[91] Hertel T, Walkup RE, Avouris P. Deformation of carbon nanotubes by surface van der Waals forces. Phys Rev B Condens Matter Mater Phys 1998;58(20):13870‒3. 链接1

[92] Sasaki N, Toyoda A, Itamura N, Miura K. Simulation of nanoscale peeling and adhesion of single-walled carbon nanotube on graphite surface. J Surface Sci Nanotech 2008;6:72‒8. 链接1

[93] Sasaki N, Toyoda A, Saitoh H, Itamura N, Ohyama M, Miura K. Theoretical simulation of atomic-scale peeling of single-walled carbon nanotube from graphite surface. J Surface Sci Nanotech 2006;4:133‒7. 链接1

[94] Fu YM, Zhang P. Peeling off carbon nanotubes from rigid substrates: an exact model. J Adhes Sci Technol 2011;25(10):1061‒72. 链接1

[95] Hu S, Xia Z, Gao X. Strong adhesion and friction coupling in hierarchical carbon nanotube arrays for dry adhesive applications. ACS Appl Mater Interfaces 2012;4(4):1972‒80. 链接1

[96] Huang PH. Molecular dynamics for lateral surface adhesion and peeling behavior of single-walled carbon nanotubes on gold surfaces. Mater Chem Phys 2011;131(1):297‒305. 链接1

[97] Pan J, Ding D, Dong S, Liu Y, Wei N, Zhao J. A theoretical analysis of peeling behavior between nanowires and substrates in the ambient condition with high relative humidity. Mech Mater 2017;114:243‒53. 链接1

[98] Li Y, Xiong Y, Zhou Z, Tang B, Yang Z, Zhao J. The peeling behavior of nanowires and carbon nanotubes from a substrate using continuum modeling. J Appl Phys 2017;121(5):054303. 链接1

[99] Woodrow J, Chilton H, Hawes RI. Forces between slurry particles due to surface tension. J Nucl Energy B Reactor Technol 1961;1(4):229. 链接1

[100] Orr FM, Scriven LE, Rivas AP. Pendular rings between solids: meniscus properties and capillary force. J Fluid Mech 1975;67(4):723‒42. 链接1

[101] Stifter T, Marti O, Bhushan B. Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning force microscopy. Phys Rev B Condens Matter Mater Phys 2000;62(20):13667‒73. 链接1

[102] Oyharcabal X, Frisch T. Peeling off an elastica from a smooth attractive substrate. Phys Rev E Stat Nonlin Soft Matter Phys 2005;71(3):036611. 链接1

[103] Dong S, Zhu C, Chen Y, Zhao J. Buckling behaviors of metal nanowires encapsulating carbon nanotubes by considering surface/interface effects from a refined beam model. Carbon 2019;141:348‒62. 链接1

[104] Chen B, Gao M, Zuo JM, Qu S, Liu B, Huang Y. Binding energy of parallel carbon nanotubes. Appl Phys Lett 2003;83(17):3570‒1. 链接1

[105] Bhushan B, Galasso B, Bignardi C, Nguyen CV, Dai L, Qu L. Adhesion, friction and wear on the nanoscale of MWNT tips and SWNT and MWNT arrays. Nanotechnology 2008;19(12):125702. 链接1

[106] Bhushan B, Ling X, Jungen A, Hierold C. Adhesion and friction of a multiwalled carbon nanotube sliding against single-walled carbon nanotube. Phys Rev B Condens Matter Mater Phys 2008;77(16):165428. 链接1

[107] Strus MC, Zalamea L, Raman A, Pipes RB, Nguyen CV, Stach EA. Peeling force spectroscopy: exposing the adhesive nanomechanics of one-dimensional nanostructures. Nano Lett 2008;8(2):544‒50. 链接1

[108] Buchoux J, Bellon L, Marsaudon S, Aimé JP. Carbon nanotubes adhesion and nanomechanical behavior from peeling force spectroscopy. Eur Phys J B 2011;84(1):69‒77. 链接1

[109] Li T, Ayari A, Bellon L. Adhesion energy of single wall carbon nanotube loops on various substrates. J Appl Phys 2015;117(16):164309. 链接1

[110] Xie H, Régnier S. In situ peeling of one-dimensional nanostructures using a dual-probe nanotweezer. Rev Sci Instrum 2010;81(3):035112. 链接1

[111] Manoharan MP, Haque MA. Role of adhesion in shear strength of nanowire‒substrate interfaces. J Phys D Appl Phys 2009;42(9):095304. 链接1

[112] Ishikawa M, Harada R, Sasaki N, Miura K. Visualization of nanoscale peeling of carbon nanotube on graphite. Appl Phys Lett 2008;93(8):083122. 链接1

[113] Desai AV, Haque MA. Sliding of zinc oxide nanowires on silicon substrate. Appl Phys Lett 2007;90(3):033102. 链接1

[114] Zheng M, Ke C. Elastic deformation of carbon-nanotube nanorings. Small 2010;6(15):1647‒55. 链接1

[115] Ke C, Zheng M, Zhou G, Cui W, Pugno N, Miles RN. Mechanical peeling of free-standing single-walled carbon-nanotube bundles. Small 2010;6(3):438‒45. 链接1

[116] Roenbeck MR, Wei X, Beese AM, Naraghi M, Furmanchuk A, Paci JT, et al. In situ scanning electron microscope peeling to quantify surface energy between multiwalled carbon nanotubes and graphene. ACS Nano 2014;8(1):124‒38. 链接1

[117] de Boer MP, Michalske TA. Accurate method for determining adhesion of cantilever beams. J Appl Phys 1999;86(2):817‒27. 链接1

[118] Mikhalchan A, Vilatela JJ. A perspective on high-performance CNT fibres for structural composites. Carbon 2019;150:191‒215. 链接1

[119] Goussev OA, Richner P, Suter UW. Local bending moment as a measure of adhesion: the cantilever beam test. J Adhes 1999;69(1‒2):1‒12.

[120] Megson THG. Structural and stress analysis. 2nd ed. Oxford: Butterworth-Heinemann; 2005. 链接1

[121] Vable M. Intermediate mechanics of materials. New York City: Oxford University Press; 2008.

[122] Cui J, Zhang Z, Lv L, Nishimura K, Chen G, Jiang N. Quantitatively investigating the self-attraction of nanowires. Nano Res 2022;15(4):3729‒36. 链接1

[123] Mastrangelo CH, Hsu CH. A simple experimental technique for the measurement of the work of adhesion of microstructures. In: Proceedings of Technical Digest IEEE Solid-State Sensor and Actuator Workshop; 1992 Jun 22‒25; HeadHilton, SC, USA. New York City: IEEE; 1992. p. 208‒12. 链接1

[124] Mikata Y. Complete solution of elastica for a clamped-hinged beam, and its applications to a carbon nanotube. Acta Mech 2007;190(1):133‒50. 链接1

[125] Chen X, Zheng M, Wei Q, Signetti S, Pugno NM, Ke C. Deformation of nanotubes in peeling contact with flat substrate: an in situ electron microscopy nanomechanical study. J Appl Phys 2016;119(15):154305. 链接1

[126] Janssen JW, Lemay SG, Kouwenhoven LP, Dekker C. Scanning tunneling spectroscopy on crossed carbon nanotubes. Phys Rev B Condens Matter Mater Phys 2002;65(11):115423. 链接1

[127] Hertel T, Martel R, Avouris P. Manipulation of individual carbon nanotubes and their interaction with surfaces. J Phys Chem B 1998;102(6):910‒5. 链接1

[128] DeBorde T, Joiner JC, Leyden MR, Minot ED. Identifying individual single-walled and double-walled carbon nanotubes by atomic force microscopy. Nano Lett 2008;8(11):3568‒71. 链接1

[129] Wang S, Ma L, Mead JL, Ju SP, Li G, Huang H. Catalyst-free synthesis and mechanical characterization of TaC nanowires. Sci China Phys Mech Astron 2021;64(5):254612. 链接1

[130] Hou L, Mead JL, Wang S, Huang H. The kinetic frictional shear stress of ZnO nanowires on graphite and mica substrates. Appl Surf Sci 2019;465:584‒90. 链接1

[131] Cassell AM, Raymakers JA, Kong J, Dai H. Large scale CVD synthesis of single-walled carbon nanotubes. J Phys Chem B 1999;103(31):6484‒92. 链接1

[132] Ke X, Bittencourt C, Van Tendeloo G. Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials. Beilstein J Nanotechnol 2015;6:1541‒57. 链接1

[133] Zheng M, Ke C, Bae IT, Park C, Smith MW, Jordan K. Radial elasticity of multi-walled boron nitride nanotubes. Nanotechnology 2012;23(9):095703. 链接1

[134] Wilson NR, Macpherson JV. Carbon nanotube tips for atomic force microscopy. Nat Nanotechnol 2009;4(8):483‒91. 链接1

[135] Chen L, Cheung CL, Ashby PD, Lieber CM. Single-walled carbon nanotube AFM probes: optimal imaging resolution of nanoclusters and biomolecules in ambient and fluid environments. Nano Lett 2004;4(9):1725‒31. 链接1

[136] Dietzel D, Faucher M, Iaia A, Aimé JP, Marsaudon S, Bonnot AM, et al. Analysis of mechanical properties of single wall carbon nanotubes fixed at a tip apex by atomic force microscopy. Nanotechnology 2005;16(3):S73‒8. 链接1

[137] Strus MC, Raman A, Han CS, Nguyen CV. Imaging artefacts in atomic force microscopy with carbon nanotube tips. Nanotechnology 2005;16(11):2482‒92. 链接1

[138] Stevens R, Nguyen C, Cassell A, Delzeit L, Meyyappan M, Han J. Improved fabrication approach for carbon nanotube probe devices. Appl Phys Lett 2000;77(21):3453‒5. 链接1

[139] Marty L, Iaia A, Faucher M, Bouchiat V, Naud C, Chaumont M, et al. Self-assembled single wall carbon nanotube field effect transistors and AFM tips prepared by hot filament assisted CVD. Thin Solid Films 2006;501(1):299‒302. 链接1

[140] Paolino P, Bellon L. Frequency dependence of viscous and viscoelastic dissipation in coated micro-cantilevers from noise measurement. Nanotechnology 2009;20(40):405705. 链接1

[141] Xie H, Haliyo DS, Régnier S. Parallel imaging/manipulation force microscopy. Appl Phys Lett 2009;94(15):153106. 链接1

[142] Ishikawa M, Harada R, Sasaki N, Miura K. Adhesion and peeling forces of carbon nanotubes on a substrate. Phys Rev B Condens Matter Mater Phys 2009;80(19):193406. 链接1

[143] Ding W, Calabri L, Chen X, Kohlhaas KM, Ruoff RS. Mechanics of crystalline boron nanowires. Compos Sci Technol 2006;66(9):1112‒24. 链接1

[144] Nicholson DW. Peel mechanics with large bending. Int J Fract 1977;13(3):279‒87. 链接1

[145] Sui C, Luo Q, He X, Tong L, Zhang K, Zhang Y, et al. A study of mechanical peeling behavior in a junction assembled by two individual carbon nanotubes. Carbon 2016;107:651‒7. 链接1

[146] Wei D, Liu Y. The intramolecular junctions of carbon nanotubes. Adv Mater 2008;20(15):2815‒41. 链接1

[147] Downes R, Wang S, Haldane D, Moench A, Liang R. Strain-induced alignment mechanisms of carbon nanotube networks. Adv Eng Mater 2015;17(3):349‒58. 链接1

[148] Xie H, Wang S, Huang H. Effects of surface roughness on the kinetic friction of SiC nanowires on SiN substrates. Tribol Lett 2018;66(1):15. 链接1

[149] Jacobs TDB, Martini A. Measuring and understanding contact area at the nanoscale: a review. Appl Mech Rev 2017;69(6):060802. 链接1

[150] Högberg JL. Mixed mode cohesive law. Int J Fract 2006;141(3):549‒59. 链接1

[151] Bordag M, Ribayrol A, Conache G, Fröberg LE, Gray S, Samuelson L, et al. Shear stress measurements on InAs nanowires by AFM manipulation. Small 2007;3(8):1398‒401. 链接1

[152] Conache G, Ribayrol A, Fröberg LE, Borgström MT, Samuelson L, Montelius L, et al. Bias-controlled friction of InAs nanowires on a silicon nitride layer studied by atomic force microscopy. Phys Rev B Condens Matter Mater Phys 2010;82(3):035403. 链接1

[153] Conache G, Gray SM, Ribayrol A, Fröberg LE, Samuelson L, Pettersson H, et al. Friction measurements of InAs nanowires on silicon nitride by AFM manipulation. Small 2009;5(2):203‒7. 链接1

[154] Kim HJ, Kang KH, Kim DE. Sliding and rolling frictional behavior of a single ZnO nanowire during manipulation with an AFM. Nanoscale 2013;5(13):6081‒7. 链接1

[155] Zeng X, Peng Y, Lang H, Cao X. Tuning the nanotribological behaviors of single silver nanowire through variousmanipulations. Appl Surf Sci 2018;440:830‒40. 链接1

[156] Hsu JH, Chang SH. Surface adhesion between hexagonal boron nitride nanotubes and silicon based on lateral force microscopy. Appl Surf Sci 2010;256(6):1769‒73. 链接1

[157] Hou L, Wang S, Huang H. A simple criterion for determining the static friction force between nanowires and flat substrates using the most-bent-state method. Nanotechnology 2015;26(16):165702. 链接1

[158] Wang S, Hou L, Xie H, Huang H. The kinetic friction between a nanowire and a flat substrate measured using nanomanipulation with optical microscopy. Appl Phys Lett 2015;107(10):103102. 链接1

[159] Xie H, Mead J, Wang S, Huang H. The effect of surface texture on the kinetic friction of a nanowire on a substrate. Sci Rep 2017;7(1):44907. 链接1

[160] Xie H, Wang S, Huang H. Characterising the nanoscale kinetic friction using force-equilibrium and energy-conservation models with optical manipulation. Nanotechnology 2016;27(6):065709. 链接1

[161] Xie H, Wang S, Huang H. Kinetic and static friction between alumina nanowires and a Si substrate characterized using a bending manipulation method. J Mater Res 2015;30(11):1852‒60. 链接1

[162] Qin Q, Zhu Y. Static friction between silicon nanowires and elastomeric substrates. ACS Nano 2011;5(9):7404‒10. 链接1

[163] Hou L, Hou M, Yibibulla T, Mead JL, Fatikow S, Wang S, et al. Frictional shear stress of ZnO nanowires on natural and pyrolytic graphite substrates. Friction 2022;10(12):2059‒68. 链接1

[164] Polyakov B, Dorogin L, Vlassov S, Kink I, Lõhmus R. Tribological aspects of in situ manipulation of nanostructures inside scanning electron microscope. In: Fundamentals of friction and wear on the nanoscale. Heidelberg: Springer Cam; 2015. p. 395‒426. 链接1

[165] Polyakov B, Dorogin LM, Vlassov S, Kink I, Lohmus A, Romanov AE, et al. Real-time measurements of sliding friction and elastic properties of ZnO nanowires inside a scanning electron microscope. Solid State Commun 2011;151(18):1244‒7. 链接1

[166] Polyakov B, Dorogin LM, Lohmus A, Romanov AE, Lohmus R. In situ measurement of the kinetic friction of ZnO nanowires inside a scanning electron microscope. Appl Surf Sci 2012;258(7):3227‒31. 链接1

[167] Zhu Y, Qin Q, Gu Y, Wang Z. Friction and shear strength at the nanowire‒substrate interfaces. Nanoscale Res Lett 2009;5(2):291‒5. 链接1

[168] Polyakov B, Vlassov S, Dorogin LM, Kulis P, Kink I, Lohmus R. The effect of substrate roughness on the static friction of CuO nanowires. Surf Sci 2012;606(17):1393‒9. 链接1

[169] Dorogin LM, Polyakov B, Petruhins A, Vlassov S, Lõhmus R, Kink I, et al. Modeling of kinetic and static friction between an elastically bent nanowire and a flat surface. J Mater Res 2012;27(3):580‒5. 链接1

[170] Dorogin LM, Vlassov S, Polyakov B, Antsov M, Lõhmus R, Kink I, et al. Real-time manipulation of ZnO nanowires on a flat surface employed for tribological measurements: experimental methods and modeling. Phys Status solid 2013;250(2):305‒17. 链接1

[171] Guo W, Yin J, Qiu H, Guo Y, Wu H, Xue M. Friction of low-dimensional nanomaterial systems. Friction 2014;2(3):209‒25. 链接1

[172] Yang Y, Lou J. Chapter 10—probing interface strength in nanocomposites and hybrid nanomaterials. In: Roy AK, editor. Hybrid atomic-scale interface design for materials functionality. Amsterdam: Elsevier Inc.; 2021. p. 209‒40. 链接1

[173] Hu S, Jiang H, Xia Z, Gao X. Friction and adhesion of hierarchical carbon nanotube structures for biomimetic dry adhesives: multiscale modeling. ACS Appl Mater Interfaces 2010;2(9):2570‒8. 链接1

[174] Kaiser AL, Stein IY, Cui K, Wardle BL. Morphology control of aligned carbon nanotube pins formed via patterned capillary densification. Nano Futures 2019;3(1):011003. 链接1

[175] Zhou M, Chen K, Li X, Liu L, Zeng Q, Mo Y, et al. Clumping stability of vertical nanofibers on surfaces. Langmuir 2018;34(38):11629‒36. 链接1

[176] Kaganer VM, Fernández-Garrido S, Dogan P, Sabelfeld KK, Brandt O. Nucleation, growth, and bundling of GaN nanowires in molecular beam epitaxy: disentangling the origin of nanowire coalescence. Nano Lett 2016;16(6):3717‒25. 链接1

[177] Liu J, Lee S, Lee K, Ahn YH, Park JY, Koh KH. Bending and bundling of metal-free vertically aligned ZnO nanowires due to electrostatic interaction. Nanotechnology 2008;19(18):185607. 链接1

[178] Zhao YP, Fan JG. Clusters of bundled nanorods in nanocarpet effect. Appl Phys Lett 2006;88(10):103123. 链接1

[179] Carapezzi S, Priante G, Grillo V, Montès L, Rubini S, Cavallini A. Bundling of GaAs nanowires: a case of adhesion-induced self-assembly of nanowires. ACS Nano 2014;8(9):8932‒41. 链接1

[180] Wang C, He X, Tong L, Luo Q, Li Y, Song Q, et al. Tensile failure mechanisms of individual junctions assembled by two carbon nanotubes. Compos Sci Technol 2015;110:159‒65. 链接1

[181] Wei X, Naraghi M, Espinosa HD. Optimal length scales emerging from shear load transfer in natural materials: application to carbon-based nanocomposite design. ACS Nano 2012;6(3):2333‒44. 链接1

[182] Yang Y, Kim ND, Varshney V, Sihn S, Li Y, Roy AK, et al. In situ mechanical investigation of carbon nanotube‒graphene junction in three-dimensional carbon nanostructures. Nanoscale 2017;9(8):2916‒24. 链接1

[183] Luo Q, Tong L. Solutions for clamped adhesively bonded single lap joint with movement of support end and its application to a carbon nanotube junction in tension. J Adhes 2016;92(5):349‒79. 链接1

[184] Bhusal S, Sihn S, Varshney V, Roy AK. A study on mechanical strength and stability of partially-fused carbon nanotube junctions. Carbon Trends 2021;3:100039. 链接1

[185] Yang X, Chen L, Zhang P, Zhong H, Zhang Y, Zhang R, et al. Investigation of the relationship between adhesion force and mechanical behavior of vertically aligned carbon nanotube arrays. Nanotechnology 2020;31(29):295701. 链接1

[186] Bhushan B, Ling X. Adhesion and friction between individual carbon nanotubes measured using force-versus-distance curves in atomic force microscopy. Phys Rev B Condens Matter Mater Phys 2008;78(4):045429. 链接1

[187] Xie H, Mead JL, Wang S, Fatikow S, Huang H. Characterizing the surface forces between two individual nanowires using optical microscopy based nanomanipulation. Nanotechnology 2018;29(22):225705. 链接1

[188] Yibibulla T, Mead JL, Ma L, Hou L, Huang H, Wang S. The shearing behavior of nanowire contact pairs in air and the role of humidity. Phys Status Solid 2022;16(8):2200130. 链接1

[189] Chen J, Yan L, Song W, Xu D. Interfacial characteristics of carbon nanotube-polymer composites: a review. Compos Part A Appl Sci Manuf 2018;114:149‒69. 链接1

[190] Tiwari A, Panda SK. Fracture energy of CNT/epoxy nanocomposites with progressive interphase debonding, cavitation, and plastic deformation of nanovoids. Fatigue Fract Eng Mater Struct 2023;46(3):1170‒89. 链接1

[191] Jiang KR, Penn LS. Improved analysis and experimental evaluation of the single filament pull-out test. Compos Sci Technol 1992;45(2):89‒103. 链接1

[192] Chua PS, Piggott MR. The glass fibre‒polymer interface: I—theoretical consideration for single fibre pull-out tests. Compos Sci Technol 1985;22(1):33‒42. 链接1

[193] Barber AH, Cohen SR, Wagner HD. Measurement of carbon nanotube‒polymer interfacial strength. Appl Phys Lett 2003;82(23):4140‒2. 链接1

[194] Barber AH, Cohen SR, Eitan A, Schadler LS, Wagner HD. Fracture transitions at a carbon-nanotube/polymer interface. Adv Mater 2006;18(1):83‒7. 链接1

[195] Barber AH, Cohen SR, Kenig S, Wagner HD. Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix. Compos Sci Technol 2004;64(15):2283‒9. 链接1

[196] Chen X, Zheng M, Park C, Ke C. Direct measurements of the mechanical strength of carbon nanotube-poly(methyl methacrylate) interfaces. Small 2013;9(19):3345‒51. 链接1

[197] Chen X, Zhang L, Zheng M, Park C, Wang X, Ke C. Quantitative nanomechanical characterization of the van der Waals interfaces between carbon nanotubes and epoxy. Carbon 2015;82:214‒28. 链接1

[198] Chen X, Zhang L, Park C, Fay CC, Wang X, Ke C. Mechanical strength of boron nitride nanotube-polymer interfaces. Appl Phys Lett 2015;107(25):253105. 链接1

[199] Yamamoto G, Shirasu K, Hashida T, Takagi T, Suk JW, An J, et al. Nanotube fracture during the failure of carbon nanotube/alumina composites. Carbon 2011;49(12):3709‒16. 链接1

[200] Zhou W, Yamamoto G, Fan Y, Kwon H, Hashida T, Kawasaki A. In-situ characterization of interfacial shear strength in multi-walled carbon nanotube reinforced aluminum matrix composites. Carbon 2016;106:37‒47. 链接1

[201] Tsuda T, Ogasawara T, Deng F, Takeda N. Direct measurements of interfacial shear strength of multi-walled carbon nanotube/PEEK composite using a nano-pullout method. Compos Sci Technol 2011;71(10):1295‒300. 链接1

[202] Ganesan Y, Peng C, Lu Y, Loya PE, Moloney P, Barrera E, et al. Interface toughness of carbon nanotube reinforced epoxy composites. ACS Appl Mater Interfaces 2011;3(2):129‒34. 链接1

[203] Ganesan Y, Salahshoor H, Peng C, Khabashesku V, Zhang J, Cate A, et al. Fracture toughness of the sidewall fluorinated carbon nanotube-epoxy interface. J Appl Phys 2014;115(22):224305. 链接1

[204] Yi C, Chen X, Gou F, Dmuchowski CM, Sharma A, Parl C, et al. Direct measurements of the mechanical strength of carbon nanotube‒aluminum interfaces. Carbon 2017;125:93‒102. 链接1

[205] Yi C, Bagchi S, Dmuchowski CM, Gou F, Chen X, Park C, et al. Direct nanomechanical characterization of carbon nanotubes‒titanium interfaces. Carbon 2018;132:548‒55. 链接1

[206] Yi C, Bagchi S, Gou F, Dmuchowski CM, Park C, Fay CC, et al. Direct nanomechanical measurements of boron nitride nanotube-ceramic interfaces. Nanotechnology 2019;30(2):025706. 链接1

[207] Nie M, Kalyon DM, Pochiraju K, Fisher FT. A controllable way to measure the interfacial strength between carbon nanotube and polymer using a nanobridge structure. Carbon 2017;116:510‒7. 链接1

[208] Zhang R, Ning Z, Zhang Y, Zheng Q, Chen Q, Xie H, et al. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat Nanotechnol 2013;8(12):912‒6. 链接1

[209] Zhang R, Ning Z, Xu Z, Zhang Y, Xie H, Ding F, et al. Interwall friction and sliding behavior of centimeters long double-walled carbon nanotubes. Nano Lett 2016;16(2):1367‒74. 链接1

[210] Cooper CA, Cohen SR, Barber AH, Wagner HD. Detachment of nanotubes from a polymer matrix. Appl Phys Lett 2002;81(20):3873‒5. 链接1

[211] Chen J, Gao X, Xu D. Recent advances in characterization techniques for the interface in carbon nanotube-reinforced polymer nanocomposites. Adv Mater Sci Eng 2019;2019:5268267. 链接1

[212] Mani A, Sharma S. Interfacial shear strength of carbon nanotube reinforced polymer composites: a review. Mater Today Proc 2022;50:1774‒80. 链接1

[213] Urbakh M. Friction: towards macroscale superlubricity. Nat Nanotechnol 2013;8(12):893‒4. 链接1

[214] Hod O, Meyer E, Zheng Q, Urbakh M. Structural superlubricity and ultralow friction across the length scales. Nature 2018;563(7732):485‒92. 链接1

[215] Dong L, Hou F, Li Y, Wang L, Gao H, Tang Y. Preparation of continuous carbon nanotube networks in carbon fiber/epoxy composite. Compos Part A Appl Sci Manuf 2014;56:248‒55. 链接1

[216] Chou TW, Gao L, Thostenson ET, Zhang Z, Byun JH. An assessment of the science and technology of carbon nanotube-based fibers and composites. Compos Sci Technol 2010;70(1):1‒19. 链接1

[217] Wu AS, Chou TW. Carbon nanotube fibers for advanced composites. Mater Today 2012;15(7):302‒10. 链接1

[218] Wu Q, Bai H, Gao A, Zhu J. High-density grafting of carbon nanotube/carbon nanofiber hybrid on carbon fiber surface by vacuum filtration for effective interfacial reinforcement of its epoxy composites. Compos Sci Technol 2022;225:109522. 链接1

[219] Zheng N, Huang Y, Sun W, Du X, Liu HY, Moody S, et al. In-situ pull-off of ZnO nanowire from carbon fiber and improvement of interlaminar toughness of hierarchical ZnO nanowire/carbon fiber hydrid composite laminates. Carbon 2016;110:69‒78. 链接1

[220] Hu SC, Wu YY, Liu CJ. Measurements of air flow characteristics in a full-scale clean room. Build Environ 1996;31(2):119‒28. 链接1

[221] Dingman J. Honeywell high-temperature microelectronics can take the heat. Report. Morristown: Honeywell International Inc.; 2015.

[222] He G, Müser MH, Robbins MO. Adsorbed layers and the origin of static friction. Science 1999;284(5420):1650‒2. 链接1

[223] Bhushan B. Adhesion and stiction: mechanisms, measurement techniques, and methods for reduction. J Vac Sci Technol B 2003;21(6):2262‒96. 链接1

[224] Zaitsev S, Shtempluck O, Buks E. Effects of electron beam induced carbon deposition on the mechanical properties of a micromechanical oscillator. Sens Actuators A Phys 2012;179:237‒41. 链接1

[225] Nosonovsky M, Bhushan B. Phase behavior of capillary bridges: towards nanoscale water phase diagram. Phys Chem Chem Phys 2008;10(16):2137‒44. 链接1

[226] Butt HJ, Kappl M. Normal capillary forces. Adv Colloid Interface Sci 2009;146(1‒2):48‒60.

[227] Israelachvili JN. Intermolecular and surface forces. 3rd ed. London: Academic Press; 2011. 链接1

[228] Yu YM, Liu BG. Contrasting morphologies of O-rich ZnO epitaxy on Zn- and O-polar thin film surfaces: phase-field model. Phys Rev B Condens Matter Mater Phys 2008;77(19):195327. 链接1

[229] Galan U, Sodano HA. Intermolecular interactions dictating adhesion between ZnO and graphite. Carbon 2013;63:517‒22. 链接1

[230] Zimmermann S, Huang H. Investigating the effects of electron beam irradiation on nanoscale adhesion. In: Proceedings of 2019 IEEE 14th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS); 2019 April 11‒14; Bangkok, Thailand. New York City: IEEE; 2019. p.33‒8. 链接1

[231] Klauser W, Bartenwerfer M, Fatikow S. Measurement of sub-nanonewton forces inside a scanning electron microscope. Rev Sci Instrum 2020;91(4):043701. 链接1

[232] Dallaporta H, Cros A. Influence of low-energy electron irradiation on the adhesion of gold films on a silicon substrate. Appl Phys Lett 1986;48(20):1357‒9. 链接1

[233] Filleter T, Espinosa HD. Multi-scale mechanical improvement produced in carbon nanotube fibers by irradiation cross-linking. Carbon 2013;56:1‒11. 链接1

[234] InstrumentsJPK. The novel JPK CryoStage for versatile temperature control for -120 °C to 220 °C. Report. Billerica: Bruker.

[235] Yu B, Hou L, Wang S, Huang H. Environment-dependent adhesion energy of mica nanolayers determined by a nanomanipulation-based bridging method. Adv Mater Interfaces 2019;6(2):1801552. 链接1

[236] Yu B, Wang F, Wang S, Hu Y, Huang H. The adhesion of mica nanolayers on a silicon substrate in air. Adv Mater Interfaces 2020;7(18):2000541. 链接1

[237] Molina J, Ramos D, Gil-Santos E, Escobar JE, Ruz JJ, Tamayo J, et al. Optical transduction for vertical nanowire resonators. Nano Lett 2020;20(4):2359‒69. 链接1

[238] Ramos D, Gil-Santos E, Malvar O, Llorens JM, Pini V, San Paulo A, et al. Silicon nanowires: where mechanics and optics meet at the nanoscale. Sci Rep 2013;3(1):3445. 链接1

[239] Dukic M, Adams JD, Fantner GE. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging. Sci Rep 2015;5(1):16393. 链接1

[240] Shi Q, Yang Z, Guo Y, Wang H, Sun L, Huang Q, et al. A vision-based automated manipulation system for the pick-up of carbon nanotubes. IEEE/ASME Trans Mechatron 2017;22(2):845‒54. 链接1

[241] Ru C, Zhang Y, Sun Y, Zhong Y, Sun X, Hoyle D, et al. Automated four-point probe measurement of nanowires inside a scanning electron microscope. IEEE Trans NanoTechnol 2011;10(4):674‒81. 链接1

[242] Ye X, Zhang Y, Ru C, Luo J, Xie S, Sun Y. Automated pick-place of silicon nanowires. IEEE Trans Autom Sci Eng 2013;10(3):554‒61. 链接1

相关研究