期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2024年 第33卷 第2期 doi: 10.1016/j.eng.2023.07.018

基于逆强化学习理论的自适应行车场景的拟人化避障轨迹规划研究

a School of Mechanical and Automotive Engineering, Liaocheng University, Liaocheng 252000, China
b School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China

收稿日期: 2022-10-14 修回日期: 2023-04-03 录用日期: 2023-07-30 发布日期: 2023-10-31

下一篇 上一篇

摘要

The forward design of trajectory planning strategies requires preset trajectory optimization functions, resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajectories that conform to real driver behavior habits. In addition, owing to the strong time-varying dynamic characteristics of obstacle avoidance scenarios, it is necessary to design numerous trajectory optimization functions and adjust the corresponding parameters. Therefore, an anthropomorphic obstacle-avoidance trajectory planning strategy for adaptive driving scenarios is proposed. First, numerous expert-demonstrated trajectories are extracted from the HighD natural driving dataset. Subsequently, a trajectory expectation feature-matching algorithm is proposed that uses maximum entropy inverse reinforcement learning theory to learn the extracted expert-demonstrated trajectories and achieve automatic acquisition of the optimization function of the expert-demonstrated trajectory. Furthermore, a mapping model is constructed by combining the key driving scenario information that affects vehicle obstacle avoidance with the weight of the optimization function, and an anthropomorphic obstacle avoidance trajectory planning strategy for adaptive driving scenarios is proposed. Finally, the proposed strategy is verified based on real driving scenarios. The results show that the strategy can adjust the weight distribution of the trajectory optimization function in real time according to the “emergency degree” of obstacle avoidance and the state of the vehicle. Moreover, this strategy can generate anthropomorphic trajectories that are similar to expert-demonstrated trajectories, effectively improving the adaptability and acceptability of trajectories in driving scenarios.

相关研究