期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2015年 第1卷 第1期 doi: 10.15302/J-ENG-2015008

富氧燃烧技术兼容性设计理念的基础研究与技术挑战

State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China

收稿日期: 2015-02-02 修回日期: 2015-02-25 录用日期: 2015-03-25 发布日期: 2015-03-31

下一篇 上一篇

摘要

富氧燃烧技术是一项颇具潜力的燃煤电站大规模CO2减排的CO2捕集与存储(CCS)新技术。以华中科技大学等为代表的中国若干高校和企业已经在该技术从0.4 MWth到35 MWth规模的试验平台上取得了较大进展,200 MWth商业化示范工程的可行性研究也已顺利完成。中国富氧燃烧技术的研发示范进展已经被纳入全球富氧燃烧技术路线图的重要进程。空气燃烧/富氧燃烧的兼容性设计是示范路线图的重要部分,针对富氧燃烧技术的一些挑战,本文简明阐述了该技术的基础研究与技术创新,包含稳燃、传热、系统运行、矿物演变、腐蚀特性等研究;为了进一步降低碳捕集的成本以及部署大规模应用,本文也简述了下一代新型富氧燃烧技术,包括新型制氧技术和无焰富氧燃烧技术。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

参考文献

[ 1 ] United Nations Statistics Division, Millennium Development. Goals indicators: carbon dioxide emissions (CO2), thousand metric tonnes of CO2. http://mdgs.un.org/unsd/mdg/SeriesDetail.aspx?srid=749&crid

[ 2 ] Department of Social Development, The Ministry of Science and Technology (MOST) of China. Carbon capture, utilization and storage technology development in China. 2011

[ 3 ] I. Hadjipaschalis, G. Kourtis, A. Poullikkas. Assessment of oxyfuel power generation technologies. Renew. Sust. Energy Rev., 2009, 13: 2637–2644 链接1

[ 4 ] M. B. Toftegaard, J. Brix, P. A. Jensen, P. Glarborg, A. D. Jensen. Oxyfuel combustion of solid fuels. Prog. Energy Combust., 2010, 36: 581–625 链接1

[ 5 ] F. L. Horn, M. Steinberg. Control of carbon dioxide emissions from a power plant (and use in enhanced oil recovery). Fuel, 1982, 61: 415–422 链接1

[ 6 ] C. G. Zheng. Greenhouse Effects and Its Control Strategy. Beijing: China Electric Power Press, 2001 (in Chinese)

[ 7 ] B. J. P. Buhre, L. K. Elliott, C. D. Sheng, R. P. Gupta, T. F. Wall. Oxyfuel combustion technology for coal-fired power generation. Prog. Energy Combust. 2005, 31: 283–307 链接1

[ 8 ] S. Santos. Oxy-coal combustion power plant with CCS-current status of development. In: Proceedings of the 39th International Technical Conference on Clean Coal & Fuel Systems. Clearwater, Fl., USA, 2014

[ 9 ] T. Nozaki, S. Takano, T. Kiga, K. Omata, N. Kimura. Analysis of the flame formed during oxidation of pulverized coal by an O2/CO2 mixture. Energy, 1997, 22(2¯3): 199–205 链接1

[10] N. Kimura, K. Omata, T. Kiga, S. Takano, S. Shikisima. The characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery. Energy Convers. Manage., 1995, 36: 805–808 链接1

[11] L. Chen, S. Z. Yong, A. F. Ghoniem. Oxyfuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling. Prog. Energy Combust., 2012, 38: 156–214 链接1

[12] T. Kiga, Characteristics of pulverized-coal combustion in the system of oxygen/recycled flue gas combustion. Energy Convers. Manage., 1997, 38: S129–S134 链接1

[13] R. H. Essenhigh, M. K. Misra, D. W. Shaw. Ignition of coal particles: A review. Combust. Flame, 1989, 77(1): 3–30 链接1

[14] C. R. Shaddix, A. Molina. Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion. Proc. Combust. Inst., 2009, 32(2): 2091–2098 链接1

[15] X. Huang, J. Li, Z. Liu, M. Yang, D. Wang, C. Zheng. Ignition and devolatil­ization of pulverized coals in lower oxygen content O2/CO2 atmosphere. In: Cleaner Combustion and Sustainable World, 2013: 99–104

[16] X. Huang. Oxyfuel combustion characteristics of pulverized coal based on flat-flame assisted entrained flow reactor (Dissertation for the Doctoral Degree). Wuhan: Huazhong University of Science and Technology, 2013 (in Chinese)

[17] Y. Qiao, L. Zhang, E. Binner, M. Xu, C. Z. Li. An investigation of the causes of the difference in coal particle ignition temperature between combustion in air and in O2/CO2. Fuel, 2010, 89(11): 3381–3387 链接1

[18] J. Liu. A study of numerical optimization design and experiment on oxycoal burner. Dissertation for the Doctoral Degree. Wuhan: Huazhong University of Science and Technology, 2012 (in Chinese)

[19] J. Liu, Mathematical modeling of air- and oxy-coal confined swirling flames on two extended eddy-dissipation models. Ind. Eng. Chem. Res., 2012, 51(2): 691–703

[20] J. Guo, Numerical investigation on oxy-combustion characteristics of a 200 MWe tangentially fired boiler. Fuel, 2015, 140: 660–668 链接1

[21] T. Kangwanpongpan, F. H. R. França, R. C. Silva, P. S. Schneider, H. J. Krautz. New correlations for the weighted sum of gray gases model in oxy-fuel conditions based on HITEMP 2010 database. Int. J. Heat Mass Transfer, 2012, 55: 7419–7433

[22] R. Johansson, B. Leckner, K. Andersson, F. Johnsson. Account for variations in the H2O to CO2 molar ratio when modelling gaseous radiative heat transfer with the weighted-sum-of-grey-gases model. Combust. Flame, 2011, 158: 893–901 链接1

[23] C. Yin, L. C. R. Johansen, L. A. Rosendahl, S. K. Kær. New weighted sum of gray gases model applicable to computational fluid dynamics (CFD) mod­eling of oxy-fuel combustion: Derivation, validation, and implementation. Energy Fuels, 2010, 24: 6275–6282 链接1

[24] K. Andersson, R. Johansson, S. Hjärtstam, F. Johnsson, B. Leckner. Radiation intensity of lignite-fired oxyfuel flames. Exp. Therm. Fluid Sci., 2008, 33: 67–76 链接1

[25] J. P. Smart, P. O’ Nions, G. S. Riley. Radiation and convective heat transfer, and burnout in oxy-coal combustion. Fuel, 2010, 89(9): 2468–2476 链接1

[26] S. Black, Effects of firing coal and biomass under oxy-fuel conditions in a power plant boiler using CFD modelling. Fuel, 2013, 113: 780–786 链接1

[27] T. Yamada, T. Uchida, T. Gotou, T. Kiga, C. Spero. Operation experience of oxyfuel boiler. In: The 3rd Oxy-fuel Combustion Conference. Spain, 2013

[28] G. Steffen. Tests and results of Vattenfall’s oxyfuel pilot plant. In: The 3rd Oxy-fuel Combustion Conference. Spain, 2013

[29] M. Habermehl, J. Erfurth, D. Toporov, M. Förster, R. Kneer. Experimental and numerical investigations on a swirl oxycoal flame. Appl. Therm. Eng., 2012, 49: 161–169 链接1

[30] A. H. Al-Abbas, J. Naser, D. Dodds. CFD modelling of air-fired and oxy-fuel combustion in a large-scale furnace at Loy Yang A brown coal power station. Fuel, 2012, 102: 646–665 链接1

[31] W. Terry, S. Rohan, S. Stanley. Demonstrations of coal-fired oxyfuel technology for carbon capture and storage and issues with commercial deployment. Int. J. Greenh. Gas Control, 2011, 5: S5–S15 链接1

[32] F. Kluger, B. Prodhomme, P. Mönckert, A. Levasseur, J. F. Leandri. CO2 capture system-confirmation of oxy-combustion promises through pilot operation. Energy Procedia, 2011, 4: 917–924 链接1

[33] K. McCauley, Commercialization of oxy-coal combustion: Applying results of a large 30 MWth pilot project. Energy Procedia, 2009, 1: 439–446 链接1

[34] W. Luo, Q. Wang, X. Huang, Z. Liu, C. Zheng. Dynamic simulation and transient analysis of a 3 MWth oxy-fuel combustion system. Int. J. Greenh. Gas Control, 2015, 35: 138–149 链接1

[35] W. Luo, Q. Wang, Z. Liu, C. Zheng. Dynamic simulation of the transition process in a 3 MWth oxy-fuel test facility. Energy Procedia, 2014, 63: 6281–6288 链接1

[36] I. Guedea, Control system for an oxy-fuel combustion fluidized bed with flue gas recirculation. Energy Procedia, 2011, 4: 972–979 链接1

[37] D. X. Yu, W. J. Morris, R. Erickson, J. O. L. Wendt, A. Fry, C. L. Senior. Ash and deposit formation from oxy-coal combustion in a 100 kW test furnace. Int. J. Greenh. Gas Control, 2011, 5: S159–S167 链接1

[38] C. D. Sheng, J. Lin, Y. Li, C. Wang. Transformation behaviors of excluded pyrite during O2/CO2 combustion of pulverized coal. Asia-Pac. J. Chem. Eng., 2010, 5(2): 304–309 链接1

[39] T. Zhang, Slagging behavior of selected coals under oxy-combustion, final report for HUST-ALSTOM collaboration project on oxyfuel combustion. 2015

[40] S. Chen, An experimental investigation of SO3 determination under oxyfuel combustion, final report for HUST-ALSTOM collaboration project on oxyfuel combustion. 2015

[41] J. Davison. Performance and costs of power plants with capture and storage of CO2. Energy, 2007, 32(7): 1163–1176 链接1

[42] Q. Yang, Y. S. Lin, M. Bülow. High temperature sorption separation of air for producing oxygen-enriched CO2 stream. AIChE J., 2006, 52(2): 574–581 链接1

[43] Z. H. Yang, Y. S. Lin. High-temperature oxygen sorption in a fixed bed packed with perovskite-type ceramic sorbents. Ind. Eng. Chem. Res., 2003, 42(19): 4376–4381 链接1

[44] Z. Rui, J. Ding, Y. Li, Y. S. Lin. SrCo0.8Fe0.2O3−δ sorbent for high-temperature production of oxygen-enriched carbon dioxide stream. Fuel, 2010, 89(7): 1429–1434 链接1

[45] S. Guntuka, S. Banerjee, S. Farooq, M. P. Srinivasan. A- and B-site substituted lanthanum cobaltite perovskite as high temperature oxygen sorbent. 1. Thermogravimetric analysis of equilibrium and kinetics. Ind. Eng. Chem. Res., 2008, 47(1): 154–162

[46] Q. Shen, Y. Zheng, C. Luo, C. Zheng. Development and characterization of Ba1−xSrxCo0.8Fe0.2O3−δ perovskite for oxygen production in oxyfuel combustion system. Chem. Eng. J., 2014, 255: 462–470

[47] J. A. Wünning, J. G. Wünning. Flameless oxidation to reduce thermal NO-formation. Prog. Energy Combust., 1997, 23: 81–94 链接1

[48] A. Cavaliere, M. de Joannon. Mild combustion. Prog. Energy Combust., 2004, 30: 329–366 链接1

[49] P. Sabia, M. de Joannon, M. Lubrano Lavadera, P. Giudicianni, R. Ragucci. Autoignition delay times of propane mixtures under MILD conditions at atmospheric pressure. Combust. Flame, 2014, 161(12): 3022–3030 链接1

[50] P. Li, Progress and recent trend in MILD combustion. Sci. China Technol. Sci., 2011, 54(2): 255–269

[51] Y. Minamoto, N. Swaminathan. Scalar gradient behaviour in MILD combustion. Combust. Flame, 2014, 161(4): 1063–1075 链接1

[52] P. Li, B. B. Dally, J. Mi, F. Wang. MILD oxy-combustion of gaseous fuels in a laboratory-scale furnace. Combust. Flame, 2013, 160(5): 933–946 链接1

[53] H. Stadler, D. Toporov, M. Förster, R. Kneer. On the influence of the char gasification reactions on NO formation in flameless coal combustion. Combust. Flame, 2009, 156(9): 1755–1763. 链接1

[54] M. Saha, B. B. Dally, P. R. Medwell, E. M. Cleary. Moderate or intense low oxygen dilution (MILD) combustion characteristics of pulverized coal in a self-recuperative furnace. Energy Fuels, 2014, 28(9): 6046–6057. 链接1

[55] P. Li, Moderate or intense low-oxygen dilution oxy-combustion characteristics of light oil and pulverized coal in a pilot-scale furnace. Energy Fuels, 2014, 28(2): 1524–1535 链接1

相关研究