期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2015年 第1卷 第1期 doi: 10.15302/J-ENG-2015011

面向机器人微创手术的新型遥控柔性机器人

1 Department of Biomedical Engineering, National University of Singapore, Singapore 119077, Singapore
2 Faculty of Design, Production Engineering, and Automotive Engineering, University of Stuttgart, 70569 Stuttgart, Germany
3 Institute of Digestive Disease, the Chinese University of Hong Kong, Hong Kong, China
4 Chow Yuk Ho Technology Centre for Innovative Medicine, the Chinese University of Hong Kong, Hong Kong, China

收稿日期: 2015-02-28 修回日期: 2015-03-21 录用日期: 2015-03-27 发布日期: 2015-03-31

下一篇 上一篇

摘要

本文介绍了基于约束型蛇形拉线机构(CTSM)的新型柔性机器人系统。与达芬奇外科手术机器人和传统柔性机器人相比,基于CTSM的机器人具有更大的工作空间,更高的灵巧度以及刚度可控的优点。该机器人采用Novint Falcon触觉设备进行远程操控, 包括两种操作模式——直接映射模式和增量模式。在每一种模式下,该机器人都可以采用“最大刚度”方案或“最小运动”方案来操控。CTSM的以上优点在仿真模拟和实验中均得以验证。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

参考文献

[ 1 ] H. Ren, Computer-assisted transoral surgery with flexible robotics and navigation technologies: A review of recent progress and research challenges. Crit. Rev. Biomed. Eng., 2013, 41(4¯5): 365–391 链接1

[ 2 ] Medgadget LLC. Intuitive’s new da Vinci Sp single port minimally invasive robotic system (VIDEO). 2014-04-23. http://www.medgadget.com/2014/04/intuitives-new-da-vinci-sp-single-port-minimally-invasive-robotic-system-video.html

[ 3 ] Z. Li, R. Du. Design and analysis of a bio-inspired wire-driven multi-section flexible robot. Int. J. Adv. Robot. Syst., 2013, 10: 1–9

[ 4 ] Z. Li, R. Du, M. C. Lei, S. M. Yuan. Design and analysis of a biomimetic wire-driven robot arm. In: Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, 2011: 191–198

[ 5 ] K. Xu, J. Zhao, M. Fu. Development of the SJTU unfoldable robotic system (SURS) for single port laparoscopy. IEEE/ASME Trans. Mechatron., 2014(99): 1–13

[ 6 ] N. Simaan, R. Taylor, P. Flint. A dexterous system for laryngeal surgery. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 1. IEEE, 2004: 351–357

[ 7 ] J. Burgner, A telerobotic system for transnasal surgery. IEEE/ASME Trans. Mechatron., 2013, 19(3): 996–1006

[ 8 ] P. E. Dupont, J. Lock, B. Itkowitz, E. Butler. Design and control of concentric-tube robots. IEEE Trans. Robot., 2010, 26(2): 209–225 链接1

[ 9 ] G. Lum, S. Mustafa, H. Lim, W. Lim, G. Yang, S. Yeo. Design and motion control of a cable-driven dexterous robotic arm. In: Proceedings of IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (STUDENT). IEEE, 2010: 106–111

[10] A. Degani, H. Choset, A. Wolf, M. A. Zenati. Highly articulated robotic probe for minimally invasive surgery. In: Proceedings of IEEE International Conference on Robotics and Automation. IEEE, 2006: 4167–4172

[11] Z. Li, R. Du. Expanding workspace of underactuated flexible manipulator by actively deploying constrains. In: Proceedings of IEEE International Conference on Robotics and Automation. IEEE, 2014: 2901–2906

[12] Z. Li, H. Yu, H. Ren. A novel underactuated wire-driven flexible robotic arm with controllable bending section length (abstract). In: ICRA 2014 Workshop on Advances in Flexible Robots for Surgical Interventions, 2014: 11

[13] Z. Li, R. Du, H. Yu, H. Ren. Statics modeling of an underactuated wire-driven flexible robotic arm. In: Proceedings of IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE, 2014: 326–331

[14] Novint Falcon haptic device. [2014-03-11]. http://www.novint.com/index.php/novintfalcon

[15] J. Feiling, Z. Li, H. Ren, H. Yu. The constrained tendon-driven serpentine manipulator and its optimal control using novint falcon. In: The 28th Canadian Conference on Electrical and Computer Engineering, 2015 (in press)

[16] K. Klein, J. Neira. Nelder-Mead simplex optimization routine for large-scale problems: A distributed memory implementation. Comput. Econ., 2014, 43(4): 447–461 链接1

相关研究