期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2015年 第1卷 第1期 doi: 10.15302/J-ENG-2015017

工业废料与天然矿物矿化利用二氧化碳的基础科学与工程应用研究

1 Center of CCUS and CO2 Mineralization and Utilization, Sichuan University, Chengdu 610065, China
2 College of Water Resources & Hydropower, Sichuan University, Chengdu 610065, China
3 College of Chemical Engineering, Sichuan University, Chengdu 610065, China
4 School of Chemistry, Sichuan University, Chengdu 610065, China

收稿日期: 2015-03-11 修回日期: 2015-03-20 录用日期: 2015-03-25 发布日期: 2015-03-31

下一篇 上一篇

摘要

二氧化碳捕集利用、合理开发自然矿产资源和妥善处理工业废料等热点问题是能源和环境可持续发展面临的重大挑战。本文以二氧化碳矿化利用技术的基础科学、经济评估与工程应用研究为重点,总结了采用天然矿物与工业废料矿化利用二氧化碳技术路线的最新研究进展。从基础科学研究与工程应用科学的视角讨论了几种代表性的大规模矿化利用二氧化碳的工艺技术,并对每项技术的工艺技术参数、反应基本原理与过程强化、工艺流程和试验性示范装置等进行了介绍。同时,基于试验研究结果和文献报道对每项技术进行了经济型讨论与评估,在结论部分提出了当前面临的技术瓶颈,并对未来在此研究领域面临的机遇与挑战进行了展望。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

参考文献

[ 1 ] C. Y. Tai, W. R. Chen, S. M. Shih. Factors affecting wollastonite carbonation under CO2 supercritical conditions. AlChE J., 2006, 52(1): 292–299 链接1

[ 2 ] W. Wang, X. Liu, P. Wang, Y. Zheng, M. Wang. Enhancement of CO2 mineralization in Ca2+-/Mg2+-rich aqueous solutions using insoluble amine. Ind. Eng. Chem. Res., 2013, 52(23): 8028–8033

[ 3 ] V. Materic, S. I. Smedley. High temperature carbonation of Ca(OH)2. Ind. Eng. Chem. Res., 2011, 50(10): 5927–5932

[ 4 ] G. Grasa, J. C. Abanades, E. J. Anthony. Effect of partial carbonation on the cyclic CaO carbonation reaction. Ind. Eng. Chem. Res., 2009, 48(20): 9090–9096

[ 5 ] D. Tong, J. P. M. Trusler, D. Vega-Maza. Solubility of CO2 in aqueous solutions of CaCl2 or MgCl2 and in a synthetic formation brine at temperatures up to 423 K and pressures up to 40 MPa. J. Chem. Eng. Data, 2013, 58(7): 2116–2124

[ 6 ] K. K. Godishala, J. S. Sangwai, N. A. Sami, K. Das. Phase stability of semiclathrate hydrates of carbon dioxide in synthetic sea water. J. Chem. Eng. Data, 2013, 58(4): 1062–1067

[ 7 ] X. Li, E. S. Boek, G. C. Maitland, J. P. M. Trusler. Interfacial tension of (brines+ CO2): CaCl2(aq), MgCl2(aq), and Na2SO4(aq) at temperatures between (343 and 423) K, pressures between (2 and 50) MPa, and molalities of (0.5 to 5) mol·kg−1. J. Chem. Eng. Data, 2012, 57(5): 1369–1375

[ 8 ] Z. Sun, M. Fan, M. Argyle. Supported monoethanolamine for CO2 separation. Ind. Eng. Chem. Res., 2011, 50(19): 11343–11349

[ 9 ] W. Chaikittisilp, R. Khunsupat, T. T. Chen, C. W. Jones. Poly (allylamine)-mesoporous silica composite materials for CO2 capture from simulated flue gas or ambient air. Ind. Eng. Chem. Res., 2011, 50(24): 14203–14210 链接1

[10] S. Holloway, J. M. Pearce, V. L. Hards, T. Ohsumi, J. Gale. Natural emissions of CO2 from the geosphere and their bearing on the geological storage of carbon dioxide. Energy, 2007, 32(7): 1194–1201 链接1

[11] H. Hassanzadeh, M. Pooladi-Darvish, D. W. Keith. Accelerating CO2 dissolution in saline aquifers for geological storage — Mechanistic and sensitivity studies. Energy Fuels, 2009, 23(6): 3328–3336 链接1

[12] J. Zhu, et al. Thermodynamics cognizance of CCS and CCU routes for CO2 Emmission Reduction. J. Sichuan Uni. (Eng. Sci. Ed), 2013, 45(5): 1–7 (in Chinese)

[13] M. Verduyn, H. Geerlings, G. Mossel, S. Vijayakumari. Review of the various CO2 mineralization product forms. Energy Procedia, 2011, 4: 2885–2892 链接1

[14] H. Tayibi, M. Choura, F. A. López, F. J. Alguacil, A. López-Delgado. Environmental impact and management of phosphogypsum. J. Environ. Manage., 2009, 90(8): 2377–2386

[15] C. Wang, H. Yue, C. Li, B. Liang, J. Zhu, H. Xie. Mineralization of CO2 using natural K-feldspar and industrial solid waste to produce soluble potassium. Ind. Eng. Chem. Res., 2014, 53(19): 7971–7978

[16] H. Xie, et al. Simultaneous mineralization of CO2 and recovery of soluble potassium using earth-abundant potassium feldspar. Chin. Sci. Bull., 2013, 58(1): 128–132

[17] B. Metz, O. Davidson, H. C. de Coninck, M. Loos, L. A. Meyer, eds. IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge: Cambridge University Press, 2005

[18] H. Xie, Y. Wang, W. Chu, Y. Ju. Mineralization of flue gas CO2 with coproduction of valuable magnesium carbonate by means of magnesium chloride. Chin. Sci. Bull., 2014, 59(23): 2882–2889 链接1

[19] L. Ye, et al. CO2 mineralization of activated K-feldspar+ CaCl2 slag to fix carbon and produce soluble potash salt. Ind. Eng. Chem. Res., 2014, 53(26): 10557–10565

[20] İ. Akın Altun, Y. Sert. Utilization of weathered phosphogypsum as set retarder in Portland cement. Cement Concr. Res., 2004, 34(4): 677–680 链接1

[21] H. V. M. Hamelers, O. Schaetzle, J. M. Paz-García, P. M. Biesheuvel, C. J. N. Buisman. Harvesting energy from CO2 emissions. Environ. Sci. Technol. Lett., 2013, 1(1): 31–35

[22] H. Xie, et al. Generation of electricity from CO2 mineralization: Principle and realization, Sci. China Technol. Sc., 2014,57 (12): 2335–2346.

[23] K. Huang, X. Meng, G. Wang. Research progress of extracting potassium from potassium feldspar. Phosphate & Compound Fertilizer, 2011, 26(5): 16–19

[24] I. A. Munz, et al. Mechanisms and rates of plagioclase carbonation reactions. Geochim. Cosmochim. Acta, 2012, 77: 27–51 链接1

相关研究