期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2015年 第1卷 第4期 doi: 10.15302/J-ENG-2015042

未来在社会中用作普适电子产品生产工具的个人桌面液态金属打印机

1 Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
2 Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China

收稿日期: 2015-04-22 修回日期: 2015-11-25 录用日期: 2015-11-30 发布日期: 2015-12-30

下一篇 上一篇

摘要

就像简单地用办公打印机在纸上打印图片一样直接写出 电子产品是电子产品行业长久以来的梦想。笔者实验室已发明和论证了首台液态金属打印机的原型,为该目标的实现迈出了关键的一步。作为在不久的将来为社会制造非常实用的桌面液态金属打印机的持续努力的一部分,本项工作旨在将此技术向消费者层面推进。通过一系列针对关键技术问题的工业设计和技术优化,如工作可靠性、打印分辨率、自动控制、人机界面设计、软件、硬件和软硬件之间的整合,可制造出一台高品质的个人桌面液态金属打印机(为进行大批量工业化生产做准备)。本文解释了此打印机的基本特点和重要技术原理,并论证了为制造功能性装置(如发光二极管(LED) 显示器)的几种可能的 消费者终端用途。此液态金属打印机是一种自动的个人电子产 品生产工具,其使用简单,成本低,并具有许多潜在用途。本文论证了这种新设备对一些新兴需求可能发挥的重要作用,概述了这项尖端技术的远景,并与几种传统打印方法进行了对比分析。可以预见,在不久的将来,这种桌面液态金属打印机将在学术领域、工业、教育和个人用户中成为基本的电子产品生 产工具,并会被用于许多新兴实践中。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

参考文献

[ 1 ] M. Bohr, K. Mistry. Intel’s Revolutionary 22 nm Transistor Technology. Santa Clara, California: Intel, 2012. http://download.intel.com/newsroom/kits/22nm/pdfs/22nm-details_presentation.pdf

[ 2 ] H. Sirringhaus, High-resolution inkjet printing of all-polymer transistor circuits. Science, 2000, 290(5499): 2123–2126 链接1

[ 3 ] Y. Zheng, Z. Z. He, J. Yang, J. Liu. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism. Sci. Rep., 2014, 4: 4588

[ 4 ] J. J. Adams, Conformal printing of electrically small antennas on three-dimensional surfaces. Adv. Mater., 2011, 23(11): 1335–1340 链接1

[ 5 ] H. S. Kim, S. R. Dhage, D. E. Shim, H. T. Hahn. Intense pulsed light sintering of copper nanoink for printed electronics. Appl. Phys., A Mater. Sci. Process., 2009, 97(4): 791–798

[ 6 ] S. B. Walker, J. A. Lewis. Reactive silver inks for patterning high-conductivity features at mild temperatures. J. Am. Chem. Soc., 2012, 134(3): 1419–1421

[ 7 ] M. Grouchko, A. Kamyshny, C. F. Mihailescu, D. F. Anghel, S. Magdassi. Conductive inks with a “built-in” mechanism that enables sintering at room temperature. ACS Nano, 2011, 5(4): 3354–3359 链接1

[ 8 ] Q. Zhang, Y. Zheng, J. Liu. Direct writing of electronics based on alloy and metal (DREAM) ink: A newly emerging area and its impact on energy, environment and health sciences. Front. Energy, 2012, 6(4): 311–340 链接1

[ 9 ] K. Ma, J. Liu. Liquid metal cooling in thermal management of computer chips. Front. Energy Power Eng. China, 2007, 1(4): 384–402 链接1

[10] N. B. Morley, J. Burris, L. C. Cadwallader, M. D. Nornberg. GaInSn usage in the research laboratory. Rev. Sci. Instrum., 2008, 79(5): 056107 链接1

[11] The Engineering ToolBox. Surface tension of some common liquids like water, mercury, oils and more. [2014-2-22]. http://www.engineeringtoolbox.com/surface-tension-d_962.html

[12] Diversified Enterprises. Critical surface tension, surface free energy, contact angles with water, and Hansen solubility parameters for various polymers. [2014-02-22]. http://www.accudynetest.com/polytable_01_print.html

[13] Y. Gao, H. Li, J. Liu. Direct writing of flexible electronics through room temperature liquid metal ink. PLoS ONE, 2012, 7(9): e45485 链接1

[14] Y. Zheng, Z. He, Y. Gao, J. Liu. Direct desktop printed-circuits-on-paper flexible electronics. Sci. Rep., 2013, 3: 1786

[15] Y. Kawahara, S. Hodges, N. W. Gong, S. Olberding, J. Steimle. Building functional prototypes using conductive inkjet printing. IEEE Pervas. Comput., 2014, 13(3): 30–38

相关研究