期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2015年 第1卷 第3期 doi: 10.15302/J-ENG-2015063

基于惯性能时空最优分布的高加速轻载机构精密定位方法

The Key Laboratory of Mechanical Equipment Manufacturing & Control Technology of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China

收稿日期: 2015-01-04 修回日期: 2015-06-16 录用日期: 2015-06-30 发布日期: 2015-09-30

下一篇 上一篇

摘要

高速运动精密定位是微电子封装设备中高加速轻载执行机构的基本运动需求。本文推导了高加速机构瞬态非线性动力学响应方程,揭示了刚度、频率、阻尼 (与材料空间布局相关) 和驱动频率 (与运动规划相关) 是主要影响因素。据此,在满足高加速机构精密定位的条件下,笔者提出了一种基于最优非线性动力学响应的结构优化和速度规划新方法。在结构优化中,首先分析了目前流行的基于等效静态载荷的柔性多体动力学优化方法未充分考虑惯性载荷的不足,然后提出了基于等效模态的柔性多体动力学最优动态响应优化新方法;在速度规划上,针对传统的几何光滑方法不能反映系统动态特性的缺陷,提出了基于变边界条件非线性动力学响应优化的速度规划新方法。将所提方法应用到高速固晶焊头的优化设计中,通过结构优化,降低振幅超过20%,再经非对称变加速规划,缩短定位时间超过40%。本文提出的方法为微电子封装类装备等高加速轻载机构精密定位的实现提供了有效的理论支撑和解决途径。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[ 1 ] H. Ding, L. M. Zhu, Z. Q. Lin. Accurate positioning and operation of high acceleration and high precision stage for IC packaging. Prog. Nat. Sci., 2003, 13(6): 568–574 (in Chinese)

[ 2 ] Z. H. Feng, H. Y. Hu. Advances in dynamics of high-speed mechanisms. Adv. Mech., 2002, 32(2): 196–204 (in Chinese)

[ 3 ] O. Wallrapp. Review of past developments in multibody system dynamics at DLR—From FADYNA to SIMPACK. Vehicle Syst. Dyn., 2004, 41(5): 339–348 链接1

[ 4 ] W. S. Choi, G. J. Park. Structural optimization using equivalent static loads at all the time intervals. Comput. Method. Appl. M., 2002, 191(19−20): 2105–2122 链接1

[ 5 ] G. J. Park, B. S. Kang. Validation of a structural optimization algorithm transforming dynamic loads into equivalent static loads. J. Optimiz. Theory App., 2003, 118(1): 191–200

[ 6 ] W. S. Choi, G. J. Park. Structural optimization using equivalent static loads at all time intervals. Comput. Method. Appl. M., 2002, 191(19−20): 2105–2122 链接1

[ 7 ] Y. I. Kim, G. J. Park. Nonlinear dynamic response structural optimization using equivalent static loads. Comput. Method. Appl. M., 2010, 199(9−12): 660–676 链接1

[ 8 ] M. K. Shin, K. J. Park, G. J. Park. Optimization of structures with nonlinear behavior using equivalent loads. Comput. Method. Appl. M., 2007, 196(4−6): 1154–1167 链接1

[ 9 ] H. A. Lee, Y. I. Kim, G. J. Park, R. M. Kolonay, M. Blair, R. A. Canfield. Structural optimization of a joined wing using equivalent static loads. J. Aircraft, 2007, 44(4): 1302–1308 链接1

[10] B. S. Kang, G. J. Park, J. S. Arora. Optimization of flexible multibody dynamic systems using the equivalent static load method. AIAA J., 2005, 43(4): 846–852

[11] K. D. Nguyen, T. C. Ng, I. M. Chen. On algorithms for planning S-curve motion profiles. Int. J. Adv. Robot. Syst., 2008, 5(1): 99–106

[12] K. Zheng, L. Cheng. Adaptive s-curve acceleration/deceleration control method. In: Proceedings of the 7th World Congress on Intelligent Control and Automation. Chongqing, China, 2008: 2752–2756

[13] P. H. Meckl. Optimized s-curve motion profiles for minimum residual vibration. In: Proceedings of the 1998 American Control Conference. Philadelphia, PA, USA, 1998: 2627–2631

[14] H. Z. Li, Z. Gong, W. Lin, T. Lippa. A new motion control approach for jerk and transient vibration suppression. In: Proceedings of 2006 IEEE International Conference on Industrial Informatics. Singapore, 2006: 676–681

[15] Z. J. Yang. Topological optimization approach for structure design of high acceleration mechanisms using equivalent static loads method. J. Mech. Eng., 2011, 47(17): 119–126 (in Chinese)

[16] Z. J. Yang, X. Chen, R. Kelly. A topological optimization approach for structural design of a high-speed low-load mechanism using the equivalent static loads method. Int. J. Numer. Meth. Eng., 2012, 89(5): 584–598

[17] H. Li, M. D. Le, Z. M. Gong, W. Lin. Motion profile design to reduce residual vibration of high-speed positioning stages. IEEE/ASME T. Mech., 2009, 14(2): 264–269 链接1

相关研究