期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2015年 第1卷 第3期 doi: 10.15302/J-ENG-2015078

系统神经工程综述:神经成像、接口及调控技术研究进展

1 Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
2 School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
3 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
4 SINAPSE Institute, National University of Singapore 119077, Singapore
5 Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA

# These authors contributed equally.

 

收稿日期: 2015-08-02 修回日期: 2015-08-25 录用日期: 2015-09-06 发布日期: 2015-09-30

下一篇 上一篇

摘要

本文综述了在系统层面研究大脑内部活动最先进的技术。负责我们日常生活的神经活动是由大脑不同区域复杂的协调过程共同完成的。表面上,不同功能由具体的解剖结构所控制,然而事实上是通过内部大量相互连接的神经元和突触通路的动态网络来实现的。因此,从系统层面能更好地理解大脑的正常生理或病理状态。目前已有很多神经工程技术,但本文将重点关注三个领域:神经成像、神经接口和神经调控技术。神经成像能够帮助我们描绘大脑的结构和功能,这对理解正常和疾病状态下的神经系统功能至关重要。基于神经影像的知识,可以开发神经接口与神经系统进行交流,或者调控大脑的活动。这三个领域的研究对开发相关的仪器、设备及其应用很关键。在神经反馈的基础上,通过神经接口 (侵入式或非侵入式) 监测神经活动 (通过神经影像模式),以一定的刺激参数,调控和改变神经功能。总之,系统神经工程是指利用工程工具和技术来成像、解码和调控大脑,进一步理解大脑的正常功能及障碍修复。这些领域之间的相互交叉将引领系统神经工程的发展方向——发展神经技术,来增强对大脑整体功能和功能障碍的理解,以及对神经和精神障碍的干预。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Z. Liu, B. He. fMRI-EEG integrated cortical source imaging by use of time-variant spatial constraints. Neuroimage, 2008, 39(3): 1198–1214 链接1

[ 2 ] F. Babiloni, Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function. Neuroimage, 2005, 24(1): 118–131 链接1

[ 3 ] G. T. Herman. Fundamentals of Computerized Tomography: Image Reconstruction from Projections. London: Springer Science & Business Media, 2009

[ 4 ] U. Bogdahn, G. Becker, J. Winkler, K. Greiner, J. Perez, B. Meurers. Transcranial color-coded real-time sonography in adults. Stroke, 1990, 21(12): 1680–1688 链接1

[ 5 ] P. J. Basser, J. Mattiello, D. LeBihan. MR diffusion tensor spectroscopy and imaging. Biophys. J., 1994, 66(1): 259–267 链接1

[ 6 ] K. Uğurbil, ; WU-Minn HCP Consortium. Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project. Neuroimage, 2013, 80: 80–104 链接1

[ 7 ] K. Setsompop, Pushing the limits of in vivo diffusion MRI for the Human Connectome Project. Neuroimage, 2013, 80: 220–233 链接1

[ 8 ] E. M. Sevick-Muraca. Translation of near-infrared fluorescence imaging technologies: Emerging clinical applications. Annu. Rev. Med., 2012, 63: 217–231 链接1

[ 9 ] G. J. Tearney, In vivo endoscopic optical biopsy with optical coherence tomography. Science, 1997, 276(5321): 2037–2039 链接1

[10] W. Lau, S. Tong, N. V. Thakor. Spatiotemporal characteristics of low-frequency functional activation measured by laser speckle imaging. IEEE Trans. Neural Syst. Rehabil. Eng., 2005, 13(2): 179–185 链接1

[11] A. Rege, J. Senarathna, N. Li, N. V. Thakor. Anisotropic processing of laser speckle images improves spatiotemporal resolution. IEEE Trans. Biomed. Eng., 2012, 59(5): 1272–1280 链接1

[12] J. Senarathna, A. Rege, N. Li, N. V. Thakor. Laser Speckle Contrast Imaging: Theory, instrumentation and applications. IEEE Rev. Biomed. Eng., 2013, 6: 99–110

[13] B. Horwitz, K. J. Friston, J. G. Taylor. Neural modeling and functional brain imaging: An overview. Neural Netw., 2000, 13(8−9): 829–846 链接1

[14] B. He, L. Yang, C. Wilke, H. Yuan. Electrophysiological imaging of brain activity and connectivity-challenges and opportunities. IEEE Trans. Biomed. Eng., 2011, 58(7): 1918–1931 链接1

[15] B. He, Grand challenges in mapping the human brain: NSF workshop report. IEEE Trans. Biomed. Eng., 2013, 60(11): 2983–2992 链接1

[16] M. M. Ter-Pogossian, M. E. Phelps, E. J. Hoffman, N. A. Mullani. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology, 1975, 114(1): 89–98 链接1

[17] P. H. Murphy, J. A. Burdine, M. Moore, R. J. Jaszcak, W. Thompson, G. DuPuey. Single photon emission computed tomography (SPECT) of the body. J. Nucl. Med., 1978, 19: 683

[18] N. K. Logothetis. What we can do and what we cannot do with fMRI. Nature, 2008, 453(7197): 869–878 链接1

[19] K. J. Friston. Modalities, modes, and models in functional neuroimaging. Science, 2009, 326(5951): 399–403 链接1

[20] P. A. Bandettini, E. C. Wong, R. S. Hinks, R. S. Tikofsky, J. S. Hyde. Time course EPI of human brain function during task activation. Magn. Reson. Med., 1992, 25(2): 390–397 链接1

[21] K. K. Kwong, Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. U.S.A., 1992, 89(12): 5675–5679 链接1

[22] S. Ogawa, Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. U.S.A., 1992, 89(13): 5951–5955 链接1

[23] H. Blumenfeld, Cortical and subcortical networks in human secondarily generalized tonic-clonic seizures. Brain, 2009, 132(4): 999–1012

[24] E. Yacoub, N. Harel, K. Ugurbil. High-field fMRI unveils orientation columns in humans. Proc. Natl. Acad. Sci. U.S.A., 2008, 105(30): 10607–10612 链接1

[25] C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, R. Grave de Peralta. EEG source imaging. Clin. Neurophysiol., 2004, 115(10): 2195–2222 链接1

[26] B. He, T. Musha, Y. Okamoto, S. Homma, Y. Nakajima, T. Sato. Electric dipole tracing in the brain by means of the boundary element method and its accuracy. IEEE Trans. Biomed. Eng., 1987, 34(6): 406–414

[27] A. M. Dale, M. I. Sereno. Improved localizadon of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach. J. Cogn. Neurosci., 1993, 5(2): 162–176 链接1

[28] R. D. Pascual-Marqui, C. M. Michel, D. Lehmann. Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. Int. J. Psychophysiol., 1994, 18(1): 49–65 链接1

[29] C. M. Michel, B. He. EEG mapping and source imaging. In: D. L. Schomer, F. H. Lopes da Silva, eds. Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. 6th ed. New York: Lippincott Williams & Wilkins, 2011: 1179–1202

[30] B. L. P. Cheung, B. A. Riedner, G. Tononi, B. D. Van Veen. Estimation of cortical connectivity from EEG using state-space models. IEEE Trans. Biomed. Eng., 2010, 57(9): 2122–2134 链接1

[31] L. Qin, L. Ding, B. He. Motor imagery classification by means of source analysis for brain-computer interface applications. J. Neural Eng., 2004, 1(3): 135–141

[32] B. Edelman, B. Baxter, B. He. EEG source imaging enhances the decoding of complex right hand motor imagery tasks. IEEE Trans. Biomed. Eng., 2015 (in press)

[33] M. Ferrari, V. Quaresima. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage, 2012, 63(2): 921–935 链接1

[34] J. D. Briers. Laser speckle contrast imaging for measuring blood flow. Opt. Appl., 2007, 37(1−2): 139–152

[35] A. M. Dale, Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron, 2000, 26(1): 55–67 链接1

[36] Z. Liu, N. Zhang, W. Chen, B. He. Mapping the bilateral visual integration by EEG and fMRI. Neuroimage, 2009, 46(4): 989–997 链接1

[37] J. Gotman, C. Grova, A. Bagshaw, E. Kobayashi, Y. Aghakhani, F. Dubeau. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc. Natl. Acad. Sci. U.S.A., 2005, 102(42): 15236–15240 链接1

[38] B. Horwitz. The elusive concept of brain connectivity. Neuroimage, 2003, 19(2): 466–470 链接1

[39] G. Pfurtscheller, F. H. Lopes da Silva. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin. Neurophysiol., 1999, 110(11): 1842–1857 链接1

[40] C. W. J. Granger. Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 1969, 37(3): 424–438 链接1

[41] M. J. Kamiński, K. J. Blinowska. A new method of the description of the information flow in the brain structures. Biol. Cybern., 1991, 65(3): 203–210 链接1

[42] L. A. Baccalá, K. Sameshima. Partial directed coherence: A new concept in neural structure determination. Biol. Cybern., 2001, 84(6): 463–474 链接1

[43] M. S. Roulston. Estimating the errors on measured entropy and mutual information. Physica D, 1999, 125(3−4): 285–294 链接1

[44] C. J. Stam, B. W. van Dijk. Synchronization likelihood: An unbiased measure of generalized synchronization in multivariate data sets. Physica D, 2002, 163(3−4): 236–251 链接1

[45] L. Astolfi, Comparison of different cortical connectivity estimators for high-resolution EEG recordings. Hum. Brain Mapp., 2007, 28(2): 143–157 链接1

[46] O. David, D. Cosmelli, K. J. Friston. Evaluation of different measures of functional connectivity using a neural mass model. Neuroimage, 2004, 21(2): 659–673 链接1

[47] A. R. McLntosh, F. Gonzalez-Lima. Structural equation modeling and its application to network analysis in functional brain imaging. Hum. Brain Mapp., 1994, 2(1−2): 2–22 链接1

[48] K. J. Friston, L. Harrison, W. Penny. Dynamic causal modelling. Neuroimage, 2003, 19(4): 1273–1302 链接1

[49] J. Daunizeau, O. David, K. E. Stephan. Dynamic causal modelling: A critical review of the biophysical and statistical foundations. Neuroimage, 2011, 58(2): 312–322 链接1

[50] M. H. Lee, C. D. Smyser, J. S. Shimony. Resting-state fMRI: A review of methods and clinical applications. AJNR Am. J. Neuroradiol., 2013, 34(10): 1866–1872 链接1

[51] L. Ding, G. A. Worrell, T. D. Lagerlund, B. He. Ictal source analysis: Localization and imaging of causal interactions in humans. Neuroimage, 2007, 34(2): 575–586 链接1

[52] C. Wilke, G. Worrell, B. He. Graph analysis of epileptogenic networks in human partial epilepsy. Epilepsia, 2011, 52(1): 84–93 链接1

[53] L. Yang, C. Wilke, B. Brinkmann, G. A. Worrell, B. He. Dynamic imaging of ictal oscillations using non-invasive high-resolution EEG. Neuroimage, 2011, 56(4): 1908–1917 链接1

[54] L. Lemieux, Event-related fMRI with simultaneous and continuous EEG: Description of the method and initial case report. Neuroimage, 2001, 14(3): 780–787 链接1

[55] M. S. Judenhofer, Simultaneous PET-MRI: A new approach for functional and morphological imaging. Nat. Med., 2008, 14(4): 459–465 链接1

[56] L. V. Wang, S. Hu. Photoacoustic tomography: In vivo imaging from organelles to organs. Science, 2012, 335(6075): 1458–1462 链接1

[57] Y. Xu, B. He. Magnetoacoustic tomography with magnetic induction (MAT-MI). Phys. Med. Biol., 2005, 50(21): 5175–5187 链接1

[58] J. Liu, X. Zhang, S. Schmitter, P. F. van de Moortele, B. He. Gradient-based electrical properties tomography (gEPT): A robust method for mapping electrical properties of biological tissues in vivo using magnetic resonance imaging. Magn. Reson. Med., 2015, 74(3): 634–646 链接1

[59] D. A. Boas, C. E. Elwell, M. Ferrari, G. Taga. Twenty years of functional near-infrared spectroscopy: Introduction for the special issue. Neuroimage, 2014, 85(1): 1–5 链接1

[60] A. K. Dunn. Laser speckle contrast imaging of cerebral blood flow. Ann. Biomed. Eng., 2012, 40(2): 367–377 链接1

[61] Q. Liu, Y. Li, H. Lu, S. Tong. Real-time high resolution laser speckle imaging of cerebral vascular changes in a rodent photothrombosis model. Biomed. Opt. Express, 2014, 5(5): 1483–1493 链接1

[62] S. Moeller, Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn. Reson. Med., 2010, 63(5): 1144–1153 链接1

[63] S. Haufe, V. V. Nikulin, A. Ziehe, K. R. Müller, G. Nolte. Combining sparsity and rotational invariance in EEG/MEG source reconstruction. Neuroimage, 2008, 42(2): 726–738 链接1

[64] A. Gramfort, D. Strohmeier, J. Haueisen, M. S. Hämäläinen, M. Kowalski. Time-frequency mixed-norm estimates: Sparse M/EEG imaging with non-stationary source activations. Neuroimage, 2013, 70: 410–422 链接1

[65] L. Ding, B. He. Sparse source imaging in electroencephalography with accurate field modeling. Hum. Brain Mapp., 2008, 29(9): 1053–1067 链接1

[66] A. Ale, V. Ermolayev, E. Herzog, C. Cohrs, M. H. de Angelis, V. Ntziachristos. FMT-XCT: In vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography. Nat. Methods, 2012, 9(6): 615–620 链接1

[67] K. Deisseroth, G. Feng, A. K. Majewska, G. Miesenböck, A. Ting, M. J. Schnitzer. Next-generation optical technologies for illuminating genetically targeted brain circuits. J. Neurosci., 2006, 26(41): 10380–10386

[68] E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, K. Deisseroth. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci., 2005, 8(9): 1263–1268 链接1

[69] J. H. Lee, Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature, 2010, 465(7299): 788–792 链接1

[70] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, T. M. Vaughan. Brain-computer interfaces for communication and control. Clin. Neurophysiol., 2002, 113(6): 767–791 链接1

[71] B. He, S. Gao, H. Yuan, J. R. Wolpaw. Brain-computer interface. In: B. He, ed. Neural Engineering. 2nd ed. Boston, MA: Springer US, 2013: 87–151

[72] B. He, B. Baxter, B. J. Edelman, C. C. Cline, W. W. Ye. Noninvasive brain-computer interfaces based on sensorimotor rhythms. P. IEEE, 2015, 103(6): 907–925

[73] H. Yuan, B. He. Brain-computer interfaces using sensorimotor rhythms: Current state and future perspectives. IEEE Trans. Biomed. Eng., 2014, 61(5): 1425–1435 链接1

[74] J. R. Wolpaw, D. J. McFarland, G. W. Neat, C. A. Forneris. An EEG-based brain-computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol., 1991, 78(3): 252–259 链接1

[75] A. J. Doud, J. P. Lucas, M. T. Pisansky, B. He. Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain-computer interface. PLoS ONE, 2011, 6(10): e26322 链接1

[76] D. J. McFarland, W. A. Sarnacki, J. R. Wolpaw. Electroencephalographic (EEG) control of three-dimensional movement. J. Neural Eng., 2010, 7(3): 036007

[77] K. LaFleur, K. Cassady, A. Doud, K. Shades, E. Rogin, B. He. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface. J. Neural Eng., 2013, 10(4): 046003

[78] D. Morrison. Mind over mechanics. Minneapolis, MN: University of Minnesota. 2013-06-04. http://discover.umn.edu/news/science-technology/brain-computer-interface-allows-mind-control-robots

[79] T. Carlson, J. del R. Millan. Brain-controlled wheelchairs: A robotic architecture. IEEE Robot. Autom. Mag., 2013, 20(1): 65–73 链接1

[80] H. Ramoser, J. Müller-Gerking, G. Pfurtscheller. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng., 2000, 8(4): 441–446 链接1

[81] R. Leeb, L. Tonin, M. Rohm, L. Desideri, T. Carlson, J. D. R. Millan. Towards independence: A BCI telepresence robot for people with severe motor disabilities. P. IEEE, 2015, 103(6): 969–982 链接1

[82] L. A. Farwell, E. Donchin. Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol., 1988, 70(6): 510–523 链接1

[83] M. Middendorf, G. McMillan, G. Calhoun, K. S. Jones. Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Trans. Rehabil. Eng., 2000, 8(2): 211–214 链接1

[84] I. Volosyak. SSVEP-based Bremen-BCI interface—Boosting information transfer rates. J. Neural Eng., 2011, 8(3): 036020

[85] G. Pfurtscheller, T. Solis-Escalante, R. Ortner, P. Linortner, G. R. Müller-Putz. Self-paced operation of an SSVEP-based orthosis with and without an imagery-based “brain switch:” A feasibility study towards a hybrid BCI. IEEE Trans. Neural Syst. Rehabil. Eng., 2010, 18(4): 409–414 链接1

[86] G. Pfurtscheller, The hybrid BCI. Front. Neurosci., 2010, 4: 30

[87] A. P. Georgopoulos, A. B. Schwartz, R. E. Kettner. Neuronal population coding of movement direction. Science, 1986, 233(4771): 1416–1419 链接1

[88] M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, J. P. Donoghue. Brain-machine interface: Instant neural control of a movement signal. Nature, 2002, 416(6877): 141–142 链接1

[89] D. M. Taylor, S. I. H. Tillery, A. B. Schwartz. Direct cortical control of 3D neuroprosthetic devices. Science, 2002, 296(5574): 1829–1832 链接1

[90] J. M. Carmena, Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol., 2003, 1(2): e42

[91] M. Velliste, S. Perel, M. C. Spalding, A. S. Whitford, A. B. Schwartz. Cortical control of a prosthetic arm for self-feeding. Nature, 2008, 453(7198): 1098–1101 链接1

[92] K. V. Shenoy, J. M. Carmena. Combining decoder design and neural adaptation in brain-machine interfaces. Neuron, 2014, 84(4): 665–680 链接1

[93] A. L. Orsborn, H. G. Moorman, S. A. Overduin, M. M. Shanechi, D. F. Dimitrov, J. M. Carmena. Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control. Neuron, 2014, 82(6): 1380–1393 链接1

[94] R. D. Flint, Z. A. Wright, M. R. Scheid, M. W. Slutzky. Long term, stable brain machine interface performance using local field potentials and multiunit spikes. J. Neural Eng., 2013, 10(5): 056005

[95] S. D. Stavisky, J. C. Kao, P. Nuyujukian, S. I. Ryu, K. V. Shenoy. A high performing brain-machine interface driven by low-frequency local field potentials alone and together with spikes. J. Neural Eng., 2015, 12(3): 036009

[96] E. C. Leuthardt, G. Schalk, J. R. Wolpaw, J. G. Ojemann, D. W. Moran. A brain-computer interface using electrocorticographic signals in humans. J. Neural Eng., 2004, 1(2): 63–71

[97] M. S. Fifer, Simultaneous neural control of simple reaching and grasping with the modular prosthetic limb using intracranial EEG. IEEE Trans. Neural Syst. Rehabil. Eng., 2014, 22(3): 695–705 链接1

[98] D. P. McMullen, Demonstration of a semi-autonomous hybrid brain-machine interface using human intracranial EEG, eye tracking, and computer vision to control a robotic upper limb prosthetic. IEEE Trans. Neural Syst. Rehabil. Eng., 2014, 22(4): 784–796

[99] J. L. Collinger, Collaborative approach in the development of high-performance brain-computer interfaces for a neuroprosthetic arm: Translation from animal models to human control. Clin. Transl. Sci., 2014, 7(1): 52–59 链接1

[100] L. M. McCane, P300-based brain-computer interface (BCI) event-related potentials (ERPs): People with amyotrophic lateral sclerosis (ALS) vs. age-matched controls. Clin. Neurophysiol., 2015 (in press)

[101] N. J. Hill, A practical, intuitive brain-computer interface for communicating ‘yes’ or ‘no’ by listening. J. Neural Eng., 2014, 11(3): 035003

[102] M. Severens, M. van der Waal, J. Farquhar, P. Desain. Comparing tactile and visual gaze-independent brain-computer interfaces in patients with amyotrophic lateral sclerosis and healthy users. Clin. Neurophysiol., 2014, 125(11): 2297–2304 链接1

[103] A. Ramos-Murguialday, Brain-machine interface in chronic stroke rehabilitation: A controlled study. Ann. Neurol., 2013, 74(1): 100–108 链接1

[104] K. K. Ang, C. Guan. Brain-computer interface for neurorehabilitation of upper limb after stroke. P. IEEE, 2015, 103(6): 944–953 链接1

[105] F. Pichiorri, Brain-computer interface boosts motor imagery practice during stroke recovery. Ann. Neurol., 2015, 77(5): 851–865 链接1

[106] J. L. Collinger, High-performance neuroprosthetic control by an individual with tetraplegia. Lancet, 2013, 381(9866): 557–564 链接1

[107] L. R. Hochberg, Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 2012, 485(7398): 372–375 链接1

[108] B. Wodlinger, J. E. Downey, E. C. Tyler-Kabara, A. B. Schwartz, M. L. Boninger, J. L. Collinger. Ten-dimensional anthropomorphic arm control in a human brain-machine interface: Difficulties, solutions, and limitations. J. Neural Eng., 2015, 12(1): 016011

[109] C. Ethier, E. R. Oby, M. J. Bauman, L. E. Miller. Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature, 2012, 485(7398): 368–371 链接1

[110] C. T. Moritz, S. I. Perlmutter, E. E. Fetz. Direct control of paralysed muscles by cortical neurons. Nature, 2008, 456(7222): 639–642 链接1

[111] N. V. Thakor. Translating the brain-machine interface. Sci. Transl. Med., 2013, 5(210): 210ps17

[112] M. Gomez-Rodriguez, J. Peters, J. Hill, B. Schölkopf, A. Gharabaghi, M. Grosse-Wentrup. Closing the sensorimotor loop: Haptic feedback facilitates decoding of motor imagery. J. Neural Eng., 2011, 8(3): 036005

[113] A. Ramos-Murguialday, Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses. PLoS ONE, 2012, 7(10): e47048 链接1

[114] R. Romo, A. Hernández, A. Zainos, E. Salinas. Somatosensory discrimination based on cortical microstimulation. Nature, 1998, 392(6674): 387–390 链接1

[115] J. E. O’Doherty, M. A. Lebedev, T. L. Hanson, N. A. Fitzsimmons, M. A. L. Nicolelis. A brain-machine interface instructed by direct intracortical microstimulation. Front. Integr. Neurosci., 2009, 3: 20

[116] J. E. O’Doherty, Active tactile exploration using a brain-machine-brain interface. Nature, 2011, 479(7372): 228–231 链接1

[117] D. H. Kim, Epidermal electronics. Science, 2011, 333(6044): 838–843 链接1

[118] B. Blankertz, Neurophysiological predictor of SMR-based BCI performance. Neuroimage, 2010, 51(4): 1303–1309 链接1

[119] K. Cassady, A. You, A. Doud, B. He. The impact of mind-body awareness training on the early learning of a brain-computer interface. Technology (Singap. World Sci.), 2014, 2(3): 254–260

[120] L. Yao, J. Meng, D. Zhang, X. Sheng, X. Zhu. Combining motor imagery with selective sensation toward a hybrid-modality BCI. IEEE Trans. Biomed. Eng., 2014, 61(8): 2304–2312 链接1

[121] L. R. Hochberg, Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 2006, 442(7099): 164–171 链接1

[122] V. Aggarwal, M. Mollazadeh, A. G. Davidson, M. H. Schieber, N. V. Thakor. State-based decoding of hand and finger kinematics using neuronal ensemble and LFP activity during dexterous reach-to-grasp movements. J. Neurophysiol., 2013, 109(12): 3067–3081 链接1

[123] S. Schaffelhofer, A. Agudelo-Toro, H. Scherberger. Decoding a wide range of hand configurations from macaque motor, premotor, and parietal cortices. J. Neurosci., 2015, 35(3): 1068–1081

[124] T. Aflalo, Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science, 2015, 348(6237): 906–910 链接1

[125] W. M. Grill, S. E. Norman, R. V. Bellamkonda. Implanted neural interfaces: Biochallenges and engineered solutions. Annu. Rev. Biomed. Eng., 2009, 11: 1–24 链接1

[126] R. Hassler, T. Riechert, F. Mundinger, W. Umbach, J. A. Ganglberger. Physiological observations in stereotaxic operations in extrapyramidal motor disturbances. Brain, 1960, 83(2): 337–350 链接1

[127] M. D. Johnson, Neuromodulation for brain disorders: Challenges and opportunities. IEEE Trans. Biomed. Eng., 2013, 60(3): 610–624 链接1

[128] A. L. Benabid, Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet, 1991, 337(8738): 403–406 链接1

[129] M. S. Okun. Deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med., 2012, 367(16): 1529–1538

[130] J. A. Hyam, M. L. Kringelbach, P. A. Silburn, T. Z. Aziz, A. L. Green. The autonomic effects of deep brain stimulation—A therapeutic opportunity. Nat. Rev. Neurol., 2012, 8(7): 391–400 链接1

[131] W. Penfield, H. Jasper. Epilepsy and the Functional Anatomy of the Human Brain. Boston: Little, Brown and Company, 1954

[132] J. P. Lefaucheur. Neurophysiology of cortical stimulation. Int. Rev. Neurobiol., 2012, 107: 57–85 链接1

[133] S. Morris, Patient-specific cortical electrodes for sulcal and gyral implantation. IEEE Trans. Biomed. Eng., 2015, 62(4): 1034–1041 链接1

[134] M. J. Morrell; RNS System in Epilepsy Study Group. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology, 2011, 77(13): 1295–1304 链接1

[135] T. Wagner, A. Valero-Cabre, A. Pascual-Leone. Noninvasive human brain stimulation. Annu. Rev. Biomed. Eng., 2007, 9(1): 527–565 链接1

[136] T. Krieg, D. J. Mogul. Transcranial magnetic stimulation. In: B. He, ed. Neural Engineering. 2nd ed. Boston, MA: Springer US, 2013: 405–453

[137] A. T. Barker, R. Jalinous, I. L. Freeston. Non-invasive magnetic stimulation of human motor cortex. Lancet, 1985, 325(8437): 1106–1107 链接1

[138] S. Ueno, T. Tashiro, K. Harada. Localized stimulation of neural tissues in the brain by means of a paired configuration of time-varying magnetic fields. J. Appl. Phys., 1988, 64(10): 5862–5864

[139] Y. Roth, A. Zangen, M. Hallett. A coil design for transcranial magnetic stimulation of deep brain regions. J. Clin. Neurophysiol., 2002, 19(4): 361–370 链接1

[140] T. Fadini, H-coil: Induced electric field properties and input/output curves on healthy volunteers, comparison with a standard figure-of-eight coil. Clin. Neurophysiol., 2009, 120(6): 1174–1182 链接1

[141] Y. Roth, G. S. Pell, A. V. Chistyakov, A. Sinai, A. Zangen, M. Zaaroor. Motor cortex activation by H-coil and figure-8 coil at different depths. Combined motor threshold and electric field distribution study. Clin. Neurophysiol., 2014, 125(2): 336–343 链接1

[142] J. P. O’Reardon, Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: A multisite randomized controlled trial. Biol. Psychiatry, 2007, 62(11): 1208–1216 链接1

[143] F. Fregni, A. Pascual-Leone. Technology insight: Noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat. Clin. Pract. Neurol., 2007, 3(7): 383–393

[144] A. Priori, A. Berardelli, S. Rona, N. Accornero, M. Manfredi. Polarization of the human motor cortex through the scalp. Neuroreport, 1998, 9(10): 2257–2260 链接1

[145] M. A. Nitsche, W. Paulus. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol., 2000, 527(3): 633–639 链接1

[146] A. Datta, V. Bansal, J. Diaz, J. Patel, D. Reato, M. Bikson. Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul., 2009, 2(4): 201–207 链接1

[147] E. N. Harvey. The effect of high frequency sound waves on heart muscle and other irritable tissues. Am. J. Physiol., 1929, 91: 284–290

[148] Y. Tufail, Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron, 2010, 66(5): 681–694 链接1

[149] W. Legon, Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat. Neurosci., 2014, 17(2): 322–329 链接1

[150] S. S. Yoo, Focused ultrasound modulates region-specific brain activity. Neuroimage, 2011, 56(3): 1267–1275 链接1

[151] T. Guo, Neuroprotective pulsed transcranial ultrasound stimulation in ischemic brain injury after distal middle cerebral artery occlusion. IEEE Trans. Biomed. Eng., 2015 (in press)

[152] H. C. F. Martens, Spatial steering of deep brain stimulation volumes using a novel lead design. Clin. Neurophysiol., 2011, 122(3): 558–566 链接1

[153] Z. D. Deng, S. H. Lisanby, A. V. Peterchev. Electric field depth-focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs. Brain Stimul., 2013, 6(1): 1–13 链接1

[154] L. I. Navarro de Lara, A novel coil array for combined TMS/fMRI experiments at 3 T. Magn. Reson. Med., 2015 (in press)

[155] A. Roy, B. Baxter, B. He. High-definition transcranial direct current stimulation induces both acute and persistent changes in broadband cortical synchronization: A simultaneous tDCS-EEG study. IEEE Trans. Biomed. Eng., 2014, 61(7): 1967–1978 链接1

[156] D. W. Carmichael, Functional MRI with active, fully implanted, deep brain stimulation systems: Safety and experimental confounds. Neuroimage, 2007, 37(2): 508–517 链接1

[157] A. A. Kühn, High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J. Neurosci., 2008, 28(24): 6165–6173 链接1

[158] K. Deisseroth. Optogenetics. Nat. Methods, 2011, 8(1): 26–29

[159] K. M. Tye, K. Deisseroth. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat. Rev. Neurosci., 2012, 13(4): 251–266 链接1

[160] A. S. Chuong, Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat. Neurosci., 2014, 17(8): 1123–1129 链接1

[161] R. Pashaie, R. Falk. Single optical fiber probe for fluorescence detection and optogenetic stimulation. IEEE Trans. Biomed. Eng., 2013, 60(2): 268–280 链接1

[162] M. L. Kringelbach, N. Jenkinson, S. L. F. Owen, T. Z. Aziz. Translational principles of deep brain stimulation. Nat. Rev. Neurosci., 2007, 8(8): 623–635 链接1

[163] B. Cheeran, A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J. Physiol., 2008, 586(23): 5717–5725 链接1

相关研究