期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《农业科学与工程前沿(英文)》 >> 2020年 第7卷 第3期 doi: 10.15302/J-FASE-2020323

Novel soil quality indicators for the evaluation of agricultural management practices: a biological perspective

. Soil Biology Group, Wageningen University and Research, 6700 AA Wageningen, The Netherlands.. Department of Soil Science, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland

录用日期: 2020-05-06 发布日期: 2020-05-06

下一篇 上一篇

摘要

Developments in soil biology and in methods to characterize soil organic carbon can potentially deliver novel soil quality indicators that can help identify management practices able to sustain soil productivity and environmental resilience. This work aimed at synthesizing results regarding the suitability of a range of soil biological and biochemical properties as novel soil quality indicators for agricultural management. The soil properties, selected through a published literature review, comprised different labile organic carbon fractions [hydrophilic dissolved organic carbon, dissolved organic carbon, permanganate oxidizable carbon (POXC), hot water extractable carbon and particulate organic matter carbon], soil disease suppressiveness measured using a - bioassay, nematode communities characterized by amplicon sequencing and qPCR, and microbial community level physiological profiling measured with MicroResp . Prior studies tested the sensitivity of each of the novel indicators to tillage and organic matter addition in ten European long-term field experiments (LTEs) and assessed their relationships with pre-existing soil quality indicators of soil functioning. Here, the results of these previous studies are brought together and interpreted relative to each other and to the broader body of literature on soil quality assessment. Reduced tillage increased carbon availability, disease suppressiveness, nematode richness and diversity, the stability and maturity of the food web, and microbial activity and functional diversity. Organic matter addition played a weaker role in enhancing soil quality, possibly due to the range of composition of the organic matter inputs used in the LTEs. POXC was the indicator that discriminated best between soil management practices, followed by nematode indices based on functional characteristics. Structural equation modeling shows that POXC has a central role in nutrient retention/supply, carbon sequestration, biodiversity conservation, erosion control and disease regulation/suppression. The novel indicators proposed here have great potential to improve existing soil quality assessment schemes. Their feasibility of application is discussed and needs for future research are outlined.

相关研究