期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2016年 第18卷 第3期 doi: 10.15302/J-SSCAE-2016.03.002

水产遗传育种与水产种业发展战略研究

1. 中国科学院水生生物研究所,淡水生态与生物技术国家重点实验室,武汉 430072;

2. 中国海洋大学,海洋生物遗传学与育种教育部重点实验室,山东青岛 266003

资助项目 :中国工程院重点咨询项目“水产养殖业十三五规划战略研究”(2014-XZ-19-3) 收稿日期: 2016-04-20 修回日期: 2016-05-03 发布日期: 2016-06-29 13:33:03.000

下一篇 上一篇

摘要

20多年来,随着水生生物学和生物技术的发展,我国在水产遗传育种与种业方面取得了诸多进展,但也面临着机遇和挑战。本文围绕种质资源保存与利用、遗传机制解析与功能基因挖掘、优良性状新品种选育、水产种业建设等,开展国内外遗传育种现状对比分析研究,分析了当前存在的一些问题,提出未来特别是“十三五”期间水产遗传育种科技发展目标和重点任务。

图片

图 1

参考文献

[ 1 ] 桂建芳. 鱼类生物学和生物技术是水产养殖可持续发展的源泉[J]. 中国科学: 生命科学, 2014, 44: 1195–1197. 链接1

[ 2 ] Brown L R. Plan B 2.0: Rescuing a Planet Under Stress and a Civilization in Trouble [M]. Washington, DC: Earth Policy Institure, International Publishers; 2006.

[ 3 ] Food and Agriculture Organization of the United Nations. The state of world fisheries and aquacuture 2014 [M]. Rome: FAO; 2014. 链接1

[ 4 ] 桂建芳, 朱作言. 水产动物重要经济性状的分子基础及其遗传改良[J]. 科学通报, 2012, 57: 1719–29. 链接1

[ 5 ] 桂建芳. 水生生物学科学前沿及热点问题[J]. 科学通报, 2015, 60: 2051–2057. 链接1

[ 6 ] Wang D, Mao H L, Chen H X, et al. Isolation of Y- and X-linked SCAR markers in yellow catfish and application in the production of all-male populations [J]. Anim Genet. 2009; 40: 978–981. 链接1

[ 7 ] Liu H Q, Guan B, Xu J, et al. Genetic manipulation of sex ratio for the large-scale breeding of YY super-male and XY all-male yellow catfish (Pelteobagrus fulvidraco (Richardson)) [J]. Mar Biotechnol. 2013; 15: 321–328. 链接1

[ 8 ] Dan C, Mei J, Wang D, et al. Genetic differentiation and efficient sex-specific marker development of a pair of Y- and X-linked markers in yellow catfish [J]. Int J Biol Sci. 2013; 9: 1043–1049. 链接1

[ 9 ] Pan Z J, Li X Y, Zhou F J, et al. Identification of sex-specific markers reveals male heterogametic sex determination in Pseudobagrus ussuriensis [J]. Mar Biotechnol. 2015; 17(4): 441–451. 链接1

[10] Chen S, Zhang G, Shao C, et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle [J]. Nat Genet. 2014; 46(3): 253–260. 链接1

[11] Zhang G, Fang X, Guo X, et al. The oyster genome reveals stress adaptation and complexity of shell formation [J]. Nature. 2012; 490: 49–54. 链接1

[12] Xu P, Zhang X, Wang X, et al. Genome sequence and genetic diversity of common carp, Cyprinus carpio [J]. Nat Genet. 2014; 46:1212–1219. 链接1

[13] Wang Y, Lu Y, Zhang Y, et al. The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation [J]. Nat Genet. 2015; 47(6): 625– 631. 链接1

[14] Wu C W, Zhang D, Kan M Y, et al. The draft genome of the large 014综合研究   水产遗传育种与水产种业发展战略研究yellow croaker reveals well-developed innate immunity [J]. Nat Comm. 2014; 5: 5227–5234.

[15] Ao J Q, Mu Y N, Xiang L X, et al. Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation [J]. PLOS Genet. 2015; 11(4): e1005118. 链接1

[16] Liu S J, Luo J, Chai J, et al. Genomic incompatibilities in the diploid and tetraploid offspring of the goldfish X common carp cross [J]. Proc Nat Acad Sci USA. 2016; 113(5): 1327–1332. 链接1

[17] 桂建芳, 周莉. 多倍体银鲫克隆多样性和双重生殖方式的遗传基础和育种应用 [J]. 中国科学: 生命科学, 2010, 42(2): 97– 103. 链接1

[18] 梅洁,桂建芳. 鱼类性别异形和性别决定的遗传基础及其生物技术操控 [J]. 中国科学: 生命科学, 2014, 44(12): 1198–212. 链接1

[19] 陈松林. 鱼类性别控制与细胞工程育种[M]. 北京: 科学出版社, 2013.

[20] 刘少军. 远缘杂交导致不同倍性鱼的形成 [J]. 中国科学:生命科学, 2010, 40(2): 104–114. 链接1

[21] 叶鼎, 朱作言, 孙永华. 鱼类基因组操作与定向育种 [J]. 中国科学: 生命科学, 2014, 44: 1253–61。 Ye D, Zhu Z Y, Sun Y H. Fish genome manipulation and directional breeding [J]. Sci Chin (Life Sci). 2015; 58 (2): 170–177. 链接1

[22] Jiao W, Fu X, Dou J, et al. High-resolution linkage and quantitative trait locus mapping aided by genome survey sequencing: Building upan integrative genomic framework for a bivalve mollusk [J]. DNA Res. 2014; 21: 85–101. 链接1

[23] Dou J, Li X, Fu Q, et al. Evaluation of the 2b-RAD method for genomic selection in scallop breeding [J]. Sci Rep. 2016; 6: 19244. 链接1

[24] Li H, Wang J, Bao Z. A novel genomic selection method combining GBLUP and LASSO [J]. Genetica. 2015; 143: 299–304. 链接1

[25] 雷霁霖. 水产种业未来之路[J] . 海洋与渔业, 2013, 1: 55–57. 链接1

[26] 唐启升. 中国水产种业创新驱动发展战略研究报告[M] . 北京: 科学出版社, 2014.

[27] Blackburn H D. The national animal germplasm program: Challenges and opportunities for poultry genetic resources [J]. Poult Sci. 2006; 85(2): 210–215. 链接1

[28] Fuji K, Hasegawa O, Honda Kumasaka K, et al. Marker-assisted breeding of a lymphocystis disease-resistant Japanese flounder (Paralichthys oli- vaceus) [J]. Aquaculture. 2007; 272: 291–295. 链接1

[29] Ozaki A, Araki K, Okamoto H. Progress of DNA marker-assisted breeding in maricultured finfish [J]. Bull Fish Res Agency (Jpn.). 2012; 35: 31–37. 链接1

[30] 海洋农业产业科技创新战略研究组良种选育与苗种繁育专题组. 创新驱动海洋种业的建议及对策[J]. 中国农村科技, 2013, 222: 70–73.

[31] Naylor R L, Goldburg R J, Primavera J H, et al. Effect of aquaculture on world fish supplies [J]. Nature. 2000; 405: 1017–1024. 链接1

[32] Pauly D, Christensen V, Guénette S, et al. Towards sustainability in world fisheries [J]. Nature. 2002; 418: 689–695. 链接1

[33] James H T, Geoff L A. Fishes as food: Aquaculture’s contribution [J]. EMBO Rep. 2001; 21: 958–963.

[34] Béné C, Barange M, Subasinghe R, et al. Feeding 9 billion by 2050—putting fish back on the menu [J]. Food Sec. 2015; 7(2): 261–274. 链接1

[35] Gjedrem T. Genetic improvement for the development of efficient global aquaculture: a personal opinion review [J]. Aquaculture. 2012; 344–349: 12–22. 链接1

[36] Gjedrem T, Robinson N, Rye M. The importance of selective breeding in aquaculture to meet future demands for animal protein: a review [J]. Aquaculture. 2012; 350–353: 117–129. 链接1

[37] Gjedrem T. Disease resistant fish and shellfish are within reach: a review [J]. J Mar Sci Eng. 2015; 3: 146–153. 链接1

[38] Villasante S, Rodriguez-Gonzalez D, Antelo M, et al. All fish for China? [J]. AMBIO. 2013; 42: 923–936. 链接1

相关研究