期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2016年 第18卷 第3期 doi: 10.15302/J-SSCAE-2016.03.008

水产生物技术发展战略研究

1. 中国水产科学研究院黄海水产研究所,山东青岛266071;

2. 青岛海洋科学与技术国家实验室海洋渔业科学与食物产出过程功能实验室,山东青岛 266273;

3. 中国水产科学研究院水产生物技术中心,北京100141

资助项目 :中国工程院重点咨询项目 “水产养殖业十三五规划战略研究”(2014-XZ-19-3);国家自然科学基金重点项目(31130057);山东省泰山学者攀登计划专家项目 收稿日期: 2016-04-27 修回日期: 2016-05-15 发布日期: 2016-06-29 13:33:03.000

下一篇 上一篇

摘要

本文从水产养殖生物基因组测序、遗传连锁图谱绘制、重要经济性状相关分子标记/基因筛选、基因组编辑、基因组选择以及细胞培养与种质冷冻保存等方面综合介绍了水产生物技术的发展现状,并深入分析了水产生物技术研究中存在的主要问题,诸如基因功能分析平台不完善,抗病与性控育种技术研究滞后,基因组编辑与全基因组选择技术刚刚起步等。同时,围绕上述主要问题,提出了水产生物技术亟待突破的关键技术,并建议“十三五”期间设立重点研究计划专项,深入开展水产动物基因组资源开发与利用、重要经济性状遗传解析以及水产生物信息大数据平台构建等。

关键词

水产 ; 生物技术 ; 基因

参考文献

[ 1 ] Star B, Nederbragt A J, Jentoft S, et al. The genome sequence of Atlantic cod reveals a unique immune system [J]. Nature. 2011; 477(7363): 207–210. 链接1

[ 2 ] Jones F C, Grabherr M G, Chan Y F, et al. The genomic basis of adaptive evolution in threespine sticklebacks [J]. Nature. 2012; 484(7392): 55–61. 链接1

[ 3 ] Nakamura Y, Morib K, Saitoh K, et al. Evolutionary changes of multiple visual pigment genes in the complete genome of pacific bluefin tuna [J]. PNAS USA. 2013; 110(27): 11061–11066. 链接1

[ 4 ] Smith J J, Kuraku S, Holt C, et al. Sequencing of the Sea Lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution [J]. Nat Genet. 2013; 45(4): 415–421. 链接1

[ 5 ] Amemiya C T, Alfoldi J, Lee A P, et al. The African Coelacanth genome provides insights into tetrapod evolution [J]. Nature. 2013; 496(7445): 311–316. 链接1

[ 6 ] Berthelot C, Brunet F, Chalopin D, et al. The Rainbow Trout genome provides novel insights into evolution after whole-genome duplication in vertebrates [J]. Nat commun. 2014; 5: 3657. 链接1

[ 7 ] David B, Catherine E W, Yang I L, et al. The genomic substrate for adaptive radiation in African Cichlid Fish [J]. Nature. 2014; 513(7518): 375–381. 链接1

[ 8 ] Zhang G, Fang X, Guo X, et al. The Oyster genome reveals stress adaptation and complexity of shell formation [J]. Nature. 2012; 490(7418): 49–54. 链接1

[ 9 ] Chen S, Zhang G, Shao C, et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle [J]. Nat Genet. 2014; 46(3): 253–260. 链接1

[10] Xu P, Zhang X, Wang X, et al. Genome sequence and genetic diversity of the common carp (Cyprinus carpio) [J]. Nat Genet. 2014; 46(11): 1212–1219. 链接1

[11] Wu C, Zhang D, Kan M, et al. The draft genome of the Large Yellow Croaker reveals well-developed innate immunity [J]. Nat Commun. 2014; 5: 5227. 链接1

[12] Wang Y, Lu Y, Zhang Y, et al. The draft genome of the Grass Carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation [J]. Nat Genet. 2015; 47(8): 625–631. 链接1

[13] You X X, Bian C, Zan Q J, et al. Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes [J]. Nat Commun. 2014; 5: 5594. 链接1

[14] Gao Y, Gao Q, Zhang H, et al. Draft sequencing and analysis of the genome of pufferfish takifugu flavidus [J]. DNA Res. 2014; 21(6): 627–637. 链接1

[15] Ye N, Zhang X, Miao M, et al. Saccharina genomes provide novel insight into kelp biology [J]. Nat Commun. 2015; 6: 6986. 链接1

[16] Matsuda M, Nagahama Y, Shinomiya A, et al. DMY is a Y-specific DM-domain gene required for male development in the medaka fish [J]. Nature. 2002; 417(6888): 559–563. 链接1

[17] Hattori R S, Murai Y, Oura M, et al. A Y-linked anti-mullerian hormone duplication takes over a critical role in sex determinat ion [J]. PNAS USA. 2012; 109(8): 2955–2959. 链接1

[18] Myosho T, Otake H, Masuyama H, et al. Tracing the emergence of a novel sex determining gene in medaka, Oryzias luzonensis [J]. Genetics. 2012; 191(1): 163–170. 链接1

[19] Kamiya T, Kai W, Tasumi S, et al. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, takifugu rubripes (Fugu) [J]. PLoS Genet. 2012; 8(7): e1002798. 链接1

[20] Yano A, Guyomard R, Nicol B, et al. An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss [J]. Curr Biol. 2012; 22(15): 1423–1428. 链接1

[21] Meng L, Zhu Y, Zhang N, et al. Cloning and characterization of tesk1, a novel spermatogenesis-related gene, in half-smooth tongue sole (Cynoglossus semilaevis) [J]. PLoS One. 2014; 9(10): e107922. 链接1

[22] Hu Q, Zhu Y. Liu Y, et al. Cloning and characterization of wnt4a gene and evidence for positive selection in half-smooth tongue sole (Cynoglossus semilaevis) [J]. Sci Rep. 2014; 4: 7167. 链接1

[23] Shao C, Liu G, Liu S, et al. Characterization of the cyp19a1a gene from a BAC sequence in half-smooth tongue sole (Cynoglossus semilaevis) and analysis of its conservation among teleosts [J]. Acta Oceanol Sin. 2014; 32(8): 35–43. 链接1

[24] Li M H, Sun Y L, Zhao J Y, et al. A tandem duplicate of anti-müllerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in nile tilapia, Oreochromis niloticus [J]. PLoS Genet. 2015; 11(11): e1005678. 链接1

[25] Liu Y, Zhang Y B, Liu T K, et al. Lineage-specific expansion 055中国工程科学 2016 年 第 18 卷 第 3 期of IFIT gene family: an insight into coevolution with IFN gene family [J]. PloS One. 2013; 8: e66859.

[26] Sun F, Zhang Y B, Jiang J, et al. Gig1, a novel antiviral effector involved in fish interferon response [J]. Virology. 2014; 448: 322–332. 链接1

[27] Wang B, Zhang Y B, Liu T K, et al. Fish viperin exerts a conserved antiviral function through RLR-triggered IFN signaling pathway [J]. Dev Comp Immunol. 2014; 47(1): 140–149. 链接1

[28] Zhang J, Zhang Y B, Wu M, et al. Fish MAVS is involved in RLR pathway-mediated IFN response [J]. Fish Shellfish Immunol. 2014; 41(2): 222–230. 链接1

[29] Wang N, Wang X, Yang C, et al. Molecular cloning, subcelluar location and expression profile of signal transducer and activator of transcription 2 (STAT2) from turbot, Scophthalmus maximus [J]. Fish Shellfish Immunol. 2014; 35(4): 1200–1208. 链接1

[30] Wang N, Wang X, Yang C, et al. Molecular cloning and multifunctional characterization of GRIM-19 (gene associated with retinoid-interferon-induced mortality 19) homologue from turbot (Scophthalmus maximus) [J]. Dev Comp Immunol. 2014; 43(1): 96–105. 链接1

[31] Chen S, Li W, Meng L, et al. Molecular cloning and expression analysis of a hepcidin antimicrobial peptide gene from turbot (Scophthalmus maximus) [J]. Fish Shellfish Immunol. 2014; 22(3): 172–181. 链接1

[32] Yang C, Wang X, Zhang B, et al. Screening and analysis of PoAkirin1 and two related genes in response to immunological stimulants in the Japanese flounder (Paralichthys olivaceus) [J]. BMC Mol Biol. 2013; 14: 10. 链接1

[33] Zeng Y, Xiang J, Lu Y, et al. SghC1q, a novel C1q family member from half-smooth tongue sole (Cynoglossus semilaevis): identification, expression and analysis of antibacterial and antiviral activities [J]. Dev Comp Immunol. 2015; 48(1): 151–163. 链接1

[34] Lu Y, Wang Q, Liu Y, et al. Gene cloning and expression analysis of IRF1 in half-smooth tongue sole (Cynoglossus semilaevis) [J]. Mol Biol Rep. 2014; 41(6): 4093–4101. 链接1

[35] Lien S, Gidskehaug L, Moen T, et al. A dense SNP-based linkage map for Atlantic Salmon (Salmo salar) reveals extended chromosome homeologies and striking differences in sex-specific recombination patterns [J]. BMC Genomics. 2011; 12: 615. 链接1

[36] Guyomard R, Boussaha M, Krieg F, et al. A synthetic Rainbow Trout linkage map provides new insights into the salmonid whole genome duplication and the conservation of synteny among teleosts [J]. BMC Genetics. 2012; 13: 15. 链接1

[37] Carlson B M, Onusko S W, Gross J B. A high-density linkage map for astyanax mexicanus using genotyping-by-sequencing technology [J]. Genes, Genomes, Genetics (Bethesda). 2014; 5(2): 241–251. 链接1

[38] Li Y, Liu S, Qin Z, et al. Construction of a high-density, high-resolution genetic map and its integration with BAC-based physical map in channel catfish [J]. DNA Res. 2015; 22(1): 39–52. 链接1

[39] Shao C, Niu Y, Pasi R, et al. Genome-wide snp identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus) applied to QTL mapping of vibrio anguillarum disease resistance and comparative genomic analysis [J]. DNA Res. 2015; 22(2): 161–170. 链接1

[40] Wang W, Hu Y, Ma Y, et al. High-density genetic linkage mapping in turbot (Scophthalmus maximus) based on SNP markers and major sex-and growth-related regions detection [J]. PLoS One. 2015; 10(3): e0120410. 链接1

[41] Zhang X, Zhang Y, Zheng X, et al. A consensus linkage map provides insights on genome character and evolution in common carp (Cyprinus carpio) [J]. Mar Biotechnol. 2013; 15(3): 275–312. 链接1

[42] Li H, Liu X, Zhang G. A consensus microsatellite-based linkage map for the hermaphroditic bay scallop (Argopecten irradians) and its application in size-related QTL analysis [J]. PLoS One. 2012; 7(10): e46926. 链接1

[43] Yu Y, Zhang X J, Yuan J B, et al. Genome survey and high-density genetic map construction provide genomic and genetic resources for the pacific white shrimp litopenaeus vannamei [J]. Sci Rep. 2015; 5: 15612. 链接1

[44] Jiao W, Fu X, Dou J, et al. High-resolution linkage and quantitative trait locus mapping aided by genome survey sequencing: building up an integrative genomic framework for a bivalve mollusc [J]. DNA Res. 2014; 21(1): 85–101. 链接1

[45] Zhang N, Zhang L, Tao Y, et al. Construction of a high density SNP linkage map of kelp (Saccharina japonica) by sequencing Taq I site associated DNA and mapping of a sex determining locus [J]. BMC Genomics. 2015; 16(1): 189. 链接1

[46] Ninwichia P, Peatman E, Perera D, et al. Identification of a sex-linked marker for channel catfish [J]. Anim Genet. 2011; 43(4): 476–477. 链接1

[47] Lipinska A P, Ahmed S, Peters A F, et al. Development of PCR-based markers to determine the sex of kelps [J]. PLoS One. 2015; 10(10): e0140535. 链接1

[48] Campbell N R, LaPatra S E, Overturf K, et al. Association mapping of disease resistance traits in rainbow rout using restriction site associated DNA sequencing [J]. Genes, Genomes, Genetics (Bethesda). 2014; 4(12): 2473–2481. 链接1

[49] Rodriguez-Ramilo S T, Fernandez J, Toro M A, et al. Uncovering QTL for resistance and survival time to philasterides dicentrarchi in turbot (Scophthalmus maximus) [J]. Anim Genet. 2013; 44(2): 149–157. 链接1

[50] Dutta S, Biswas S, Mukherjee K, et al. Identification of RAPD-SCAR marker linked to white spot syndrome virus resistance in populations of giant black tiger shrimp, penaeus monodon fabricius [J]. J Fish Dis. 2014; 37(5): 471–480. 链接1

[51] 陈松林. 鱼类性别控制与细胞工程育种[M]. 北京: 科学出版社, 2013.

[52] Chen S L, Li J, Deng S P, et al. Isolation of female specific AFLP markers and identification of genetic sex in half-smooth tongue sole (Cynoglossus semilaevis) [J]. Mar Biotechnd (NY) 2007; 9(2): 272–280. 链接1

[53] Chen S L, Ji X S, Shao C W, et al. Induction of mitogynogenetic diploids and identification of WW super-female using sex-specific SSR markers in half-smooth tongue sole (Cynoglossus semilaevis) [J]. Mar Biotechnol. 2012; 14(1): 120–128. 链接1

[54] Dan C, Mei J, Wang D, et al. Genetic differentiation and efficient sex-specific marker development of a pair of Y- and X-linked markers in yellow catfish [J]. Int J Biol Sci. 2013; 9(10): 1043–1049. 链接1

[55] Xu D D, Lou B, Xu H X, et al. Isolation and characterization of male-specific DNA markers in the rock bream oplegnathus 056综合研究   水产生物技术发展战略研究Fasciatus [J]. Mar Biotechnol. 2013; 15(2): 221–229. 链接1

[56] Liu Y, Bi Y, Gu J, et al. Localization of a female-specific marker on the chromosomes of the brown seaweed saccharina japonica using fluorescence in situ hybridization [J]. PLoS One. 2012; 7(11): e48784. 链接1

[57] Wang L, Fan C, Liu Y, et al. A genome scan for quantitative trait loci associated with Vibrio anguillarum infection resistance in Japanese flounder (Paralichthys olivaceus) by bulked segregant analysis [J]. Mar Biotechnol. 2014; 16(5): 513–521. 链接1

[58] Robinson N, Hayes B. Modelling the use of gene expression profiles with selective breeding for improved disease resistance in atlantic salmon (Salmo salar) [J]. Aquaculture. 2008; 285(1): 38–46. 链接1

[59] Liu S, Sun L, Li Y, et al. Development of the Catfish 250K SNP array for genome-wide association studies [J]. BMC Res Notes. 2014; 7: 135. 链接1

[60] Tatsumi Y, Takeda M, Matsuda M, et al. TALEN-mediated mutagenesis in zebrafish reveals a role for r-spondin 2 in fin ray and vertebral development [J]. FEBS Lett. 2014; 588(24): 4543–4550. 链接1

[61] Ansai S, Kinoshita M. Targeted mutagenesis using CRISPR/Cas system in medaka [J]. Biol Open. 2014; 3(5): 362–371. 链接1

[62] Edvardsen R B, Leininger S, Kleppe L, et al. Targeted mutagenesis in atlantic salmon (Salmo salar) using the CRISPR/Cas9 system induces complete knockout individuals in the F0 generation [J]. PLoS One. 2014; 9(9): e108622. 链接1

[63] Li M H, Yang H H, Li M R, et al. Antagonistic roles of dmrt1 and foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs [J]. Endocrinology. 2013; 154: 4814–4825. 链接1

[64] Zhong Z M, Niu P F, Wang M Y, et al. Targeted disruption of sp7 and myostatin with CRISPR/Cas9 results in severe bone defects and more muscular cells in common carp [J]. Sci Rep. 2016; 6: 22953. 链接1

[65] 陈松林, 崔忠凯, 郑汉其, 等. 一种基于基因组编辑的海水鲆鲽鱼类种质构建方法及应用[P]. 201610162019. 5. Chen S L, Cui Z K, Zheng H Q, et al. A genome editing-based breeding method in flatfish and its application [P]. 201610162019.

[66] Swaminathan T R, Basheer V S, Gopalakrishnan A, et al. Establishment of caudal fin cell lines from tropical ornamental fishes Puntius fasciatus and Pristolepis fasciata endemic to the western ghats of India [J]. Acta Tropica. 2013; 28(3): 536– 541. 链接1

[67] Abdul Majeed S, Nambi K S, Taju G, et al. Development, characterization and application of a new fibroblastic-like cell line from kidney of a freshwater air breathing fish channa striatus (Bloch, 1793) [J]. Acta Tropica. 2013; 127(1): 25–32. 链接1

[68] Jayesh P, Jose S, Philip R, et al. A novel medium for the development of in vitro cell culture system from penaeus monodon [J]. Cytotechnology. 2013; 65(3): 307–322. 链接1

[69] Mercurio S, Di Benedetto C, Sugni M, et al. Primary cell cultures from sea urchin ovaries: a new experimental tool [J]. In Vitro Cell Dev Biol Anim. 2014; 50(2): 139–145. 链接1

[70] 陈松林, 秦启伟. 鱼类细胞培养理论与技术[M]. 北京: 科学出版社, 2011.

[71] Sun A, Wang T Z, Wang N. e t a l . Es tabl i shment and characterization of an ovarian cell line from half-smooth tongue sole (Cynoglossus semilaevis) [J]. J Fish Biol. 2015; 86(1): 46–59.

[72] Sun A, Chen S, Gao F, et al. Establishment and characterization of a gonad cell line from half-smooth tongue sole (Cynoglossus semilaevis) pseudomale [J]. Fish Physiol Biochem. 2015; 41(3): 673–683. 链接1

[73] Wang T Z, Sun A, Wang N. e t a l . Es tabl i shment and characterization of an astroglial cell line derived from the brain of half-smooth tongue sole (Cynoglossus semilaevis) [J]. Zool Res. 2015; 36 (5): 305–310.

[74] 刘肖峰, 陈松林, 沙珍霞, 等. 云纹石斑鱼心脏细胞系的建立与鉴定[J]. 农业生物技术学报, 2015, 23(10): 1394–1400. 链接1

[75] Keivanloo S, Sudagar M . Feasibility studies on vitrification of persian sturgeon (Acipenser persicus) embryos [J]. J Aquac Res Dev. 2013; 4: 172. 链接1

[76] Tian Y, Jiang J, Song L, et al. Effects of cryopreservation on the survival rate of the seven-band grouper (Epinephelus septemfasciatus) embryos [J]. Cryobiology. 2015; 71(3): 499–506. 链接1

相关研究