期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2018年 第20卷 第3期 doi: 10.15302/J-SSCAE-2018.03.010

柔性太阳电池发展研究

1. 中国科学院大连化学物理研究所,辽宁大连 116023

2. 陕西师范大学,西安 710119

资助项目 :中国工程院咨询项目“我国能源技术革命的技术方向和体系战略研究”(2015-ZD-09);创新知识工程项目(Y261261606) 收稿日期: 2018-05-28 修回日期: 2018-05-31 发布日期: 2018-09-04 15:38:29.000

下一篇 上一篇

摘要

柔性太阳电池可应用在卫星、飞艇、无人机、单兵装备、光伏建筑一体化以及可穿戴智能设备上,极具发展前景。本文介绍了柔性硅薄膜太阳电池、柔性碲化镉太阳电池、柔性铜铟镓硒太阳电池和柔性钙钛矿太阳电池的电池结构、制备方法和发展现状,分析了柔性太阳电池效率提升以及产业化过程中存在的问题,并从柔性衬底选择、电池效率提升、产业化装备制造等几个方面,对柔性太阳电池下一步发展提出了建议。

图片

图 1

图 2

图 3

图 4

图 5

图 6

图 7

图 8

图 9

图 10

参考文献

[ 1 ] Pagliaro M, Ciriminna R, Palmisano G. Flexible solar cells [J]. ChemSusChem, 2008, 1(11): 880–891.

[ 2 ] Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. Journal of the American Chemical Society, 2009, 131(17): 6050–6051. 链接1 链接2

[ 3 ] Yan B, Yue G, Sivec L, et al. Innovative dual function nc-SiOx:H layer leading to a >16 % efficient multi-junction thin-film silicon solar cell [J]. Applied Physics Letters, 2011, 99(11): 860. 链接1 链接2

[ 4 ] Yan B, Yang J, Guha S. Amorphous and nanocrystalline silicon thin film photovoltaic technology on flexible substrates [J]. Journal of Vacuum Science & Technology a Vacuum Surfaces & Films, 2012, 30(4):04D108-104D108-110. 链接1 链接2

[ 5 ] Banerjee A, Liu F S, Beglau D, et al. 12.0 % efficiency on large-area, encapsulated, multijunction nc-Si:H-Based solar cells [J]. IEEE Journal of Photovoltaics, 2012, 2(2): 104–108.

[ 6 ] 中国科学院. 中国学科发展战略 · 光化学 [M]. 北京: 科学出版社, 2018.
Chinese Academy of Sciences. China’s discipline development strategy-photochemistry [M]. Beijing: China Science Publishing & Media Ltd., 2018. Chinese.

[ 7 ] Haug F J, Söderström T, Python M, et al. Development of micromorph tandem solar cells on flexible low-cost plastic substrates [J]. Solar Energy Materials & Solar Cells, 2009, 93(6–7): 884–887. 链接1 链接2

[ 8 ] Soderstrom T, Haug F J, Terrazzoni-Daudrix V, et al. Optimization of amorphous silicon thin film solar cells for flexible photovoltaics [J]. Journal of Applied Physics, 2008, 103(11): 27–33. 链接1 链接2

[ 9 ] Marins E, Warzecha M, Michard S, et al. Flexible n-i-p thin film silicon solar cells on polyimide foils with textured ZnO:Ga back reflector [J]. Thin Solid Films, 2014, 571(A): 9–12. 链接1 链接2

[10] Liu Y, Rath J K, Schropp R E I. Development of micromorph tandem solar cells on foil deposited by VHF-PECVD [J]. Surface & Coatings Technology, 2007, 201: 9330–9333. 链接1 链接2

[11] Li H, Werf C H M V D, Borreman A, et al. Flexible a-Si:H/nc-Si:H tandem thin film silicon solar cells on plastic substrates with i -layers made by hot-wire CVD [J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2008, 2(4): 157–159.

[12] Fernández S, Santos J D, Munuera C, et al. Effect of argon plasma-treated polyethylene terepthalate on ZnO:Al properties for flexible thin film silicon solar cells applications [J]. Solar Energy Materials & Solar Cells, 2015, 133: 170–179. 链接1 链接2

[13] Başol B M, Kapur V K, Halani A, et al. Copper indium diselenide thin film solar cells fabricated on flexible foil substrates [J]. Solar Energy Materials & Solar Cells, 1993, 29(2): 163–173. 链接1 链接2

[14] Niki S, Contreras M, Repins I, et al. CIGS absorbers and processes 073中国工程科学 2018 年 第 20 卷 第 3 期[J]. Progress in Photovoltaics Research & Applications, 2010, 18(6): 453–466.
Niki S, Contreras M, Repins I, et al. CIGS absorbers and process- es [J]. Progress in Photovoltaics Research & Applications, 2010, 18(6): 453–466.

[15] Hartmann M, Schmidt M, Jasenek A, et al. Flexible and light weight substrates for Cu(In,Ga)Se/sub 2/ solar cells and modules [C]. IEEE Photovoltaic Specialists Conference, 2002: 638–641. 链接1 链接2

[16] Yagioka T, Nakada T. Cd-free flexible Cu(In,Ga)Se2 thin film solar cells with ZnS(O,OH) buffer layers on Ti foils [J]. Applied Physics Express, 2009, 2(7): 072201. 链接1 链接2

[17] Penndorf J, Winkler M, Tober O. CuInS2 thin film formation on a Cu tape substrate for photovoltaic applications [J]. Solar Energy Materials & Solar Cells, 1998, 53(3–4): 285–298. 链接1 链接2

[18] Contreras M A, Egaas B, Ramanathan K, et al. Progress toward 20 % efficiency in Cu (In, Ga) Se2 polycrystalline thin-film solar cells [J]. Progress in Photovoltaics: Research and applications, 1999, 7(4): 311–316. 链接1 链接2

[19] Pianezzi F, Chiril A, Blosch P, et al. Electronic properties of Cu(In,Ga)Se2 solar cells on stainless steel foils without diffusion barrier [J]. Progress in Photovoltaics Research & Applications, 2012, 20(3): 253–259.

[20] Kessler F, Herrmann D, Powalla M. Approaches to flexible CIGS thin-film solar cells [J]. Thin Solid Films, 2005, 480(3): 491–498. 链接1 链接2

[21] Chirilă A, Buecheler S, Pianezzi F, et al. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films [J]. Nature Materials, 2011, 10(11): 857–861. 链接1 链接2

[22] Hodges D R. Development of CdTe thin film solar cells on flexible foil substrates [D]. Florida: University of South Florida (Doctoral dissertation), 2009.

[23] Ferekides C S, Balasubramanian U, Mamazza R, et al. CdTe thin film solar cells: Device and technology issues [J]. Solar Energy, 2004, 77(6): 823–830. 链接1 链接2

[24] 肖立新, 邹德春. 钙钛矿太阳能电池 [M]. 北京: 北京大学出版社, 2016.
Xiao L X, Zou D C. Perovskite solar cells [M]. Bejing: Peking University Press, 2016. Chinese.

[25] Feng J, Yang Z, Yang D, et al. E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells [J]. Nano Energy, 2017, 36: 1–8. 链接1 链接2

[26] Giacomo F D, Zardetto V, D’Epifanio A, et al. Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates [J]. Advanced Energy Materials, 2015, 5(8): 1–9. 链接1 链接2

[27] Kim B J, Dong H K, Lee Y Y, et al. Highly efficient and bending durable perovskite solar cells: Toward a wearable power source [J]. Energy & Environmental Science, 2015, 8(3): 916–921. 链接1

[28] Yang D, Yang R, Zhang J, et al. High efficiency flexible perovskite solar cells using superior low temperature TiO2 [J]. Energy & Environmental Science, 2015, 8(11): 3208–3214.

[29] Yang D, Yang R, Ren X, et al. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport [J]. Advanced Materials, 2016, 28(26): 5206–5213. 链接1 链接2

[30] Wang C, Guan L, Zhao D, et al. Water vapor treatment of low-temperature deposited SnO2 electron selective layers for efficient flexible perovskite solar cells [J]. Acs Energy Letters, 2017, 2(9): 2118–2124. 链接1 链接2

[31] Roldáncarmona C, Malinkiewicz O, Soriano A, et al. Flexible high efficiency perovskite solar cells [J]. Energy & Environmental Science, 2014, 7(3): 994–997. 链接1 链接2

[32] Docampo P, Ball J M, Darwich M, et al. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates [J]. Nature Communications, 2013, 4(7): 2761. 链接1 链接2

[33] You J, Hong Z, Yang Y M, et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility [J]. Acs Nano, 2014, 8(2): 1674. 链接1 链接2

[34] Lee M, Jo Y, Kim D, et al. Flexible organo-metal halide perovskite solar cells on a Ti metal substrate [J]. Journal of Materials Chemistry A, 2015, 3(8): 4129–4133. 链接1 链接2

[35] Troughton J, Bryant D, Wojciechowski K, et al. Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates [J]. Journal of Materials Chemistry A, 2015, 3(17): 9141–9145.

[36] Wang X, Li Z, Xu W, et al. TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode [J]. Nano Energy, 2015, 11: 728–735. 链接1 链接2

[37] Qiu L B, Deng J, Lu X, et al. Integrating perovskite solar cells into a flexible fiber [J]. Angewandte Chemie, 2014, 53(39): 10425–10428. 链接1 链接2

相关研究