期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2018年 第20卷 第6期 doi: 10.15302/J-SSCAE-2018.06.018

基于悬浮光力学的惯性传感颠覆性技术

1. 浙江大学光电科学与工程学院,杭州310027;

2. 清华大学,北京100084

资助项目 :中国工程院咨询项目“工程科技颠覆性技术战略研究”(2017-ZD-10);教育部联合基金(6141A02011604);中央高校基本科研业务费专项资金(2016XZZX00401) 收稿日期: 2018-10-25 修回日期: 2018-11-08 发布日期: 2018-12-31

下一篇 上一篇

摘要

悬浮光力学是光力学与量子光学结合的产物,为微纳机械振子的控制和测量提供了一种全新的量子方法,这种方法具有前所未有的观测精度,可接近甚至突破标准量子极限,具有广阔的发展和应用前景。目前国际上已在室温下利用此系统实现了力、力矩、位移、加速度等多个物理量的极高灵敏度测量。本文综述了悬浮光力学的研究现状及国内外在精密传感与测量方面的进展。作为近年来发展起来的一种前沿技术,悬浮光力学已逐渐从基础研究走向应用,特别是对惯性传感与精密测量领域有重要的应用前景。最后提出了发展基于悬浮光力学的惯性传感颠覆性技术的建议,为我国惯性传感与量子精密测量技术发展规划的制定提供参考。

图片

图 1

图 2

图 3

图 4

参考文献

[ 1 ] Ashkin A, Dziedzic J M. Optical levitation by radiation pressure [J]. Applied Physics Letters, 1971, 19(8): 283–285. 链接1

[ 2 ] Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles [J]. Optics Letters, 1986, 11(5): 288–290. 链接1

[ 3 ] Romero-Isart O, Juan M L, Quidant R, et al. Toward quantum superposition of living organisms [J]. New Journal of Physics, 2009, 12(3): 033015. 链接1

[ 4 ] Chang D E, Regal C A, Papp S B, et al. Cavity opto-mechanics using an optically levitated nanosphere [J]. The National Academy of Sciences of the United States of America, 2010, 107(3): 1005– 1010. 链接1

[ 5 ] Li T C, Kheifets S, Medellin D, et al. Measurement of the instantaneous velocity of a Brownian particle [J]. Science, 2010, 328 (5986): 1673–1675. 链接1

[ 6 ] Li T. Millikelvin cooling of an optically trapped microsphere in vacuum [M]. New York: Springer, 2013. 链接1

[ 7 ] Jain V, Gieseler J, Moritz C, et al. Direct measurement of photon recoil from a levitated nanoparticle [J]. Physical Review Letters, 2016, 116(24): 243601. 链接1

[ 8 ] Romero-Isart O, Pflanzer A C, Blaser F, et al. Large quantum superpositions and interference of massive nanometer-sized objects [J]. Physical Review Letters, 2011, 107(2): 020405. 链接1

[ 9 ] Yin Z Q, Li T C, Zhang X, et al. Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling [J]. Physical Review A, 2013, 88(3): 033614. 链接1

[10] Robicheaux F. Comment on “matter-wave interferometry of a levitated thermal nano-oscillator induced and probed by a spin” [J]. Physical Review Letters, 2013, 111(18): 180403. 链接1

[11] Hoang T M, Ahn J, Bang J, et al. Electron spin control of optically levitated nanodiamonds in vacuum [J]. Nature Communications, 2016, 7: 12250. 链接1

[12] Rahman A T M A, Barker P F. Laser refrigeration, alignment and rotation of levitated Yb 3+ : YLF nanocrystals [J]. Nature Photonics, 2017, 11(10): 634–638. 链接1

[13] Kaltenbaek R, Kiesel N, Romero-Isart O, et al. Macroscopic quantum resonators (MAQRO) [J]. Experimental Astronomy, 2012, 34(2): 123–164. 链接1

[14] Millen J, Deesuwan T, Barker P, et al. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere [J]. Nature Nanotechnology, 2014, 9(6): 425–429. 链接1

[15] Hoang T M, Pan R, Ahn J, et al. Experimental test of the differential fluctuation theorem and a generalized jarzynski equality for arbitrary initial states [J]. Physical Review Letters, 2018, 120(8): 080602. 链接1

[16] Bang J, Pan R, Hoang T M, et al. Experimental realization of Feynman’s ratchet [J]. New Journal of Physics, 2018, 20: 103032. 链接1

[17] Ranjit G, Cunningham M, Casey K, et al. Zeptonewton force sensing with nanospheres in an optical lattice [J]. Physical Review A, 2016, 93(5): 053801. 链接1

[18] Xu Z, Li T. Detecting Casimir torque with an optically levitated nanorod [J]. Physical Review A, 2017, 96(3): 033843. 链接1

[19] Monteiro F, Ghosh S, Fine A G, et al. Optical levitation of 10-ng spheres with nano-g, acceleration sensitivity [J]. Physical Review A, 2017, 96(6): 063841. 链接1

[20] Shen Y, Wang J Z, Luo J Y, et al. Theory and simulation of accelerometer based on laser trap [J]. Infrared and Laser Engineering, 2010, 39(3): 543–548. 链接1

[21] Fu Z H, She X, Li N, et al. Launch and capture of a single particle in a pulse-laser-assisted dual-beam fiber-optic trap [J]. Optics Communications, 2018 (417): 103–109. 链接1

[22] Ge X J, Shen Y, Su H M, et al. Practical sensing chip based on optical trap [J]. Acta Photonica Sinica, 2018, 47(2): 0206001.

[23] Li Z G, Shen Y, Hu H Z, et al. Simulation and measurement of stiffness for dual beam laser trap using residual gravity method [J]. International Journal of Nanotechnology, 2015, 12: 849–859. 链接1

[24] Hoang T M, Ma Y, Ahn J, et al. Torsional optomechanics of a levitated nonspherical nanoparticle [J]. Physical Review Letters, 2016, 117(12): 123604. 链接1

[25] Ahn J, Xu Z, Bang J, et al. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor [J]. Physical Review Letters, 2018, 121(3): 033603. 链接1

[26] Yan X C, Qi Z Y. High-precision gravimeter based on a nanomechanical resonator hybrid with an electron spin, arXiv: 1807.05671 [quant-ph].

相关研究