期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2019年 第21卷 第1期 doi: 10.15302/J-SSCAE-2019.01.002

中国新一代核能核燃料总体发展战略研究

1. 中国核学会,北京 100045;

2. 上海大学,上海 201800;

3. 中广核研究院有限公司,广东深圳 518031;

4. 中国核动力研究设计院,成都 610000

资助项目 :中国工程院咨询项目“新一代核能用材发展战略研究”(2016-ZD-06) 收稿日期: 2018-12-07 修回日期: 2019-01-04

下一篇 上一篇

摘要

本文深入分析和研究了国内外压水堆燃料和材料技术,快堆及其他先进堆燃料技术以及核燃料循环相关材料技术发展的现状和趋势,提出了我国压水堆、快堆及其他先进堆核燃料与材料,以及核燃料循环材料发展的目标、发展路线图和重点任务。压水堆是我国21世纪相当长时间内核能发电及能源结构转型的主力堆型。作为压水堆发展重要支撑的核燃料及材料基本实现了国产化,但还没有实现品牌自主化。我国的快堆及快堆核燃料发展面临机遇和挑战,核燃料循环产业面临重大历史性发展机遇和巨大挑战。最后对我国的压水堆、快堆、其他先进堆型核燃料及材料,以及我国核燃料循环材料的发展提出了建议。

参考文献

[ 1 ] 中华人民共和国国家发展和改革委员会, 国家能源局. 能源技 术革命创新行动计划(2016—2030 年) [R]. 北京: 中华人民共和 国国家发展和改革委员会, 国家能源局, 2016. National Development and Reform Commission of the PRC, National Energy Administration. Energy technology revolution innovation action plan (2016—2030) [R]. Beijing: National Development and Reform Commission of the PRC, National Energy Administration, 2016.
National Development and Reform Commission of the PRC, National Energy Administration. Energy technology revolution innovation action plan (2016—2030) [R]. Beijing: National Development and Reform Commission of the PRC, National Energy Administration, 2016. Chinese.

[ 2 ] Electric Power Resarch Institute. Advanced nuclear technology: Advanced light water reactors utility requirements document small modular reactors inclusion summary (revision 13) [R]. Palo Alto: Electric Power Resarch Institute, 2014.

[ 3 ] European Organisation. European utility requirements for LWR nuclear power plants – Vol. 1, 2, 4, revision E [R]. Barcelona: European Organisation, 2017.

[ 4 ] 中国工程院. 核燃料技术发展战略研究 [R]. 北京: 中国工程院, 2018. Chinese Academy of Engineering. Research on development strategy of nuclear fuel technology [R]. Beijing: Chinese Academy of Engineering, 2018.
Chinese Academy of Engineering. Research on development strategy of nuclear fuel technology [R]. Beijing: Chinese Academy of Engineering, 2018. Chinese.

[ 5 ] Bragg-Sitton S. U.S.DOE development of accident tolerant fuels. OECD/NEA expert group on ATF for LWRs [R]. Washington DC: Department of Energy, 2016.

[ 6 ] Westinghouse Electric Co. Westinghouse accident tolerant fuel program [R]. Paris: Westinghouse Electric Co., 2017.

[ 7 ] Ferroni P, Lahoda E. GAIN workshop on fuel safety [R]. Idaho: Idaho National Laboratory, Westinghouse Corporation, 2017.

[ 8 ] Strumpell J H. Areva ATF programs, GAIN workshop on fuel safety [R]. Idaho: Idaho National Laboratory, 2017.

[ 9 ] Malone J. Development needs for advanced LWR fuels [R]. Idaho: Idaho National Laboratory, 2017.

[10] Bennett W D, Doherty A L, Henager C H, et al. Status report for the Uranium molybdenum fuel concept [R]. Washington DC: Pacific Northwest National Laboratory, 2016.

[11] Golosov O A, Lyutikova M S, Semerikov V B, et al. Burnup and thermal annealing effect on structural change and structural parameters of Uranium-Molybdenum dispersion fuel [J]. Atomic Energy, 2016, 121(4): 269–275. 链接1

[12] Robert A L, Brandon R L, Adam B T. Report on neams workbench support for Moose applications, Oak Ridge, Tennessee [R]. Tennessee Prefecture: Oak Ridge National Laboratory, 2016.

[13] Carmack J. Fuel Development for advanced reactors [R]. Washington DC: Department of Energy, 2016.

[14] Tanju Sofu. Sodium-cooled fast reactor (SFR) fuels: MOX-metal safety issues [R]. Mexico City: IAEA Education & Training Seminar on Fast Reactor Science and Technology, 2015.

[15] Tanju Sofu. Inherent safety characteristics of metal-alloy fast reactor fuel [R]. Vienna: Fourth Joint IAEA-GIF Technical Meeting/Workshop on Safety of Sodium-cooled Fast Reactors, 2014.

[16] Vatulin A V, Suprun V B, Kulakov G V. Development of fuel for research reactors [J]. Atomic Energy, 2016, 119(5): 304–310. 链接1

[17] Yu M G. Oxide–metal core is possible transition to the metal fuel core for fast reactors of the BN-type [J]. International Journal of Energy and Power Engineering, 2013, 2(3): 113–120.

[18] Stewart R, Palmer T. Fuel design space for sodium fast reactors [R]. Orlando: ANS Winter Meeting & Expo, 2018.

[19] Ivanov V, Skupov M, Shadrin A. Closed nuclear fuel cycle with fast reactors and dense fuel [R]. Mosco: Rosatom, 2012.

[20] Grachev A F, Zabudko L M, Zvir E A. Development of innovative fast reactor nitride fuel in Russian Federation [R]. Yekaterinburg: State-of-Art (IAEA) International Conference on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development (FR17), 2017.

[21] Kumar A. Development, fabrication and characterization of fuels for indian fast reactor programme [R]. Paris: International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13), 2013.

[22] Vasile A. The astrid project-advanced sodium technological reactor for industrial demonstration [R]. Russia: 48th Meeting of IAEA Technical Working Group on Fast Reactors, 2015.

[23] Organisation for Economic Co-operation and Development, The Nuclear Energy Agency. 2017 Generation IV international Forum annual report [R]. Paris: Organisation for Economic Co-operation and Development, The Nuclear Energy Agency, 2017.

[24] Postovarova D V, Kovalev N V, Onegin M S, et al. Radiation characteristics of Remix fuel during multiple recycling in VVER- 1000 reactors [J]. Nuclear Energy and Technology, 2016, 2: 119– 125. 链接1

[25] Zalimskaya L. Making the new nuclear fuel cycle [R]. London: Wolrd Nuclear Association Symposium, 2017.

相关研究