期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2019年 第21卷 第3期 doi: 10.15302/J-SSCAE-2019.03.014

海洋桥梁工程轻质、高强、耐久性结构材料现状及发展趋势研究

1. 东南大学,南京 211189;

2. 武汉钢铁集团设计研究院,武汉 430080

资助项目 :中国工程院咨询项目“海洋桥梁工程技术发展战略研究”(2016-XZ-13) 收稿日期: 2019-05-09 修回日期: 2019-05-20

下一篇 上一篇

摘要

本文针对海洋环境下大跨桥梁突出的长期服役性能问题和轻量化需求,通过对轻质、高强、耐久的材料深入调研,总结了高性能钢、高性能混凝土及纤维增强复合材料的研究现状及发展趋势,介绍了上述材料在桥梁关键区域的针对性应用技术,并提出海洋桥梁工程轻质、高强、耐久材料发展的战略建议,以满足海洋桥梁工程高性能、长寿命、轻量化的需求,突破海洋环境下大跨桥梁的耐久和跨度瓶颈。

图片

图 1

图 2

图 3

图 4

图 5

图 6

图 7

图 8

图 9

参考文献

[ 1 ] Mangat P S, Grigoriadis K, Abgbakrl S. Microwave curing parameters of in-situ concrete repairs [J]. Construction and Building Materials, 2016 (112): 856–866. 链接1

[ 2 ] 郭小华, 于英俊, 王玲, 等. 工业环境混凝土结构耐久性修复研 究现状 [J]. 工业建筑, 2019, 49(1): 156–162. Guo X H, Yu Y J, Wang L, et al. Research status of durability repair of concrete structure in industry environment [J]. Industry Construction, 2019, 49(1): 156–162.
Guo X H, Yu Y J, Wang L, et al. Research status of durability repair of concrete structure in industry environment [J]. Industry Construction, 2019, 49(1): 156–162. Chinese. 链接1

[ 3 ] 黄维, 张志勤, 高真凤, 等. 国外高性能桥梁用钢的研发 [J]. 世 界桥梁, 2011 (2): 18–21. Huang W, Zhang Z Q, Gao Z F, et al. Research and development of high-performance steel used in bridge abroad [J]. World Bridges, 2011 (2): 18–21.
Huang W, Zhang Z Q, Gao Z F, et al. Research and development of high-performance steel used in bridge abroad [J]. World Bridges, 2011 (2): 18–21. Chinese. 链接1

[ 4 ] 姚昌荣, 李亚东, 强士中. 美国桥梁高性能钢的发展与应用 [J]. 世界桥梁, 2005 (1): 57–61. Yao C R, Li Y D, Qiang S Z. Development and applications of high-performance steel used in bridge in the USA [J]. World Bridges, 2005 (1): 57–61.
Yao C R, Li Y D, Qiang S Z. Development and applications of high-performance steel used in bridge in the USA [J]. World Bridges, 2005 (1): 57–61. Chinese. 链接1

[ 5 ] Ohba H, Noshida S, Tarui T, et a1. High-performance wire rods produced with DLP [J]. Nippon Steel Technical Report, 2007, 96: 50–56. 链接1

[ 6 ] 党玉栋, 钱觉时, 乔墩, 等. 减缩剂预饱和轻骨料对水泥砂浆自 收缩的影响及机理 [J]. 硅酸盐学报, 2011, 39(1): 47–53. Dang Y D, Qian J S, Qiao D, et al. Influence and mechanism of lightweight aggregates pre-saturated with shrinkage reducing admixtures on autogenous shrinkage of cement mortar [J]. Journal of the Chinese Ceramic Society, 2011, 39(1): 47–53.
Dang Y D, Qian J S, Qiao D, et al. Influence and mechanism of lightweight aggregates pre-saturated with shrinkage reducing admixtures on autogenous shrinkage of cement mortar [J]. Journal of the Chinese Ceramic Society, 2011, 39(1): 47–53. Chinese. 链接1

[ 7 ] 刘建忠. 超高性能水泥基复合材料制备技术及静态拉伸行为研 究 [D]. 南京: 东南大学 (博士学位论文), 2013. Liu J Z. Study on preparation technology and static, dynamic tensile behavior of ultra-high performance cementitious composites [D]. Nanjing: Southeast University (Doctoral dissertation), 2013.
Liu J Z. Study on preparation technology and static, dynamic tensile behavior of ultra-high performance cementitious composites [D]. Nanjing: Southeast University (Doctoral dissertation), 2013. Chinese.

[ 8 ] Wang X, Wu Z, Wu G, et al. Enhancement of basalt FRP by hybridization for long-span cable-stayed bridge [J]. Composites Part B: Engineering, 2013, 44(1): 184–192. 链接1

[ 9 ] Wang X, Shi J, Liu J, et al. Creep behavior of basalt fiber reinforced polymer tendons for prestressing application [J]. Materials & Design, 2014, 59(7): 558–564. 链接1

[10] Zhao X, Wang X, Wu Z, et al. Fatigue behavior and failure mechanism of basalt FRP composites under long-term cyclic loads [J]. International Journal of Fatigue, 2016, 88: 58–67. 链接1

[11] Wang X, Wu G, Wu Z, et al. Evaluation of prestressed basalt fiber and hybrid fiber reinforced polymer tendons under marine environment [J]. Materials & Design, 2014, 64: 721–728. 链接1

[12] 国际桥梁与结构工程协会. 高性能钢材在钢结构中的应用 [M]. 北京: 中国建筑工业出版社, 2010. International Association for Bridge and Structural Engineering. Use and application of high-performance steels for steel structures [M]. Beijing: China Building Industry Press, 2010.
International Association for Bridge and Structural Engineering. Use and application of high-performance steels for steel structures [M]. Beijing: China Building Industry Press, 2010. Chinese.

[13] Kazeminezhad M, Taheri A K. The effect of controlled cooling after hot rolling on the mechanical properties of a commercial high carbon steel wire rod [J]. Materials & Design, 2003, 24(6): 415–421. 链接1

[14] Wang X, Shi J, Wu G, et al. Effectiveness of basalt FRP tendons for strengthening of RC beams through the external prestressing technique [J]. Engineering Structures, 2015, 101: 34–44. 链接1

[15] 刘长源. 预应力BFRP 板外贴加固RC 梁抗弯性能研究 [D]. 南 京: 东南大学 (硕士学位论文), 2019. Liu C Y. Study on the bending performance of steel reinforced concrete beams strengthened by prestressed and externally bonded BFRP plates [D]. Nanjing: Southeast University (Master’s thesis), 2019.
Liu C Y. Study on the bending performance of steel reinforced concrete beams strengthened by prestressed and externally bonded BFRP plates [D]. Nanjing: Southeast University (Master’s thesis), 2019. Chinese.

[16] 孙沈鹏. BFRP 模壳— 混凝土组合桥面板基本性能研究 [D]. 南 京: 东南大学 (硕士学位论文), 2015. Sun S P. Research on fundamental behavior of BFRP formconcrete composite deck slab [D]. Nanjing: Southeast University (Master’s thesis), 2015.
Sun S P. Research on fundamental behavior of BFRP form concrete composite deck slab [D]. Nanjing: Southeast University (Master’s thesis), 2015. Chinese. 链接1

[17] 邓文杰. BFRP 模壳— 混凝土组合桥面板在长期荷载下的性能 研究 [D]. 南京: 东南大学 (硕士学位论文), 2017. Den W J. Mechanical behavior of BFRP shell-concrete composite bridge deck under long-term loads [D]. Nanjing: Southeast University (Master’s thesis), 2017.
Den W J. Mechanical behavior of BFRP shell-concrete composite bridge deck under long-term loads [D]. Nanjing: Southeast University (Master’s thesis), 2017. Chinese. 链接1

[18] Wu Z S, Yamamoto M. Study on the basic performance of FRPconcrete structures using basalt fibre reinforced polymer rods [R]. Okayama: The 68th Annual Meeting of the Japan Society of Civil Engineers, 2013.

[19] Ibrahim A M A, Wu Z, Fahmy M F M, et al. Experimental study on cyclic response of concrete bridge columns reinforced by steel and basalt FRP reinforcements [J]. Journal of Composites for Construction, 2015, 20(3): 04015062. 链接1

[20] Yang Y, Wang X, Wu Z. Damping behavior of hybrid fiberreinforced polymer cable with self-damping for long-span bridges [J]. Journal of Bridge Engineering, 2017, 22(7): 05017005. 链接1

[21] Wang X, Xu P, Wu Z, et al. A novel anchor method for multitendon FRP cable: Concept and FE study [J]. Composite Structures, 2015, 120: 552–564. 链接1

[22] Wang X, Xu P, Wu Z, et al. A novel anchor method for multitendon FRP cable: Manufacturing and experimental study [J]. Journal of Composites for Construction, 2015, 19(6): 04015010. 链接1

相关研究