期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2019年 第21卷 第6期 doi: 10.15302/J-SSCAE-2019.06.001

深海海洋生态系统与海洋生态保护区发展趋势

1. 中山大学海洋科学学院,广东珠海 519082;

2. 南方海洋科学与工程广东省实验室(珠海),广东珠海 519082

资助项目 :中国工程院咨询项目“海洋强国战略研究2035”(2018-ZD-08) 收稿日期: 2019-08-03 修回日期: 2019-10-09 发布日期: 2019-12-20

下一篇 上一篇

摘要

本文介绍了深海生态系统的类型及研究现状、面临的主要问题、关键需求及对策。与浅海生态系统相比,深海样品获取困难、已知数据少、研究程度较低。深海栖息着丰富多彩的生物群落,例如深海热泉中分布的具有特化营养体的管状蠕虫及极端嗜热古菌、冷泉区分布的硫酸盐还原菌共生的贻贝及蛤类、海山区域高度多样性的生物群落、捕食浮游生物的冷水珊瑚以及形态奇特的深渊狮子鱼,这些均迥异于其他生态环境,具有很高的生态研究价值。近年来,我国对深海资源的开发需求日益增强,深海探测技术迅速发展为深海生态系统的研究提供了契机,开展深海生物多样性研究并发展深海生态系统理论模型,成为迫在眉睫且切实可行的重要任务。为此,提出建立深海生物数据库、平衡深海资源利用与生态保护的关系、发展深海生态理论模型、加快管理对策和法律文书的制定等深海生态系统的保护对策建议。

图片

图 1

图 2

参考文献

[ 1 ] Corliss J B, Dymond J, Gordon L I, et al. Submarine thermal springs on the Galapagos Rift [J]. Science, 1979, 203(4385): 1073–1083. 链接1

[ 2 ] Martin W, Baross J, Kelley D, et al. Hydrothermal vents and the origin of life [J]. Nature Reviews Microbiology, 2008, 6(11): 805–814. 链接1

[ 3 ] Weiss M C, Sousa F L, Mrnjavac N, et al. The physiology and habitat of the last universal common ancestor [J]. Nature Microbiology, 2016, 1(9): 16116. 链接1

[ 4 ] Desbruyères D, Segonzac M, Bright M. Handbook of deep-sea hydrothermal vent fauna second edition [M]. Linz: State Museum of Upper Austria, 2006.

[ 5 ] Miroshnichenko M L. Thermophilic microbial communities of deep-sea hydrothermal vents [J]. Microbiology, 2004, 73(1): 1–13. 链接1

[ 6 ] Cavanaugh C M, Wirsen C O, Jannasch H. Evidence for methylotrophic symbionts in a hydrothermal vent mussel (Bivalvia: Mytilidae) from the Mid-Atlantic Ridge [J]. Applied and Environmental Microbiology, 1992, 58(12): 3799–3803. 链接1

[ 7 ] Minic Z, Hervé G. Biochemical and enzymological aspects of the symbiosis between the deep-sea tubeworm Riftia pachyptila and its bacterial endosymbiont [J]. European Journal of Biochemistry, 2004, 271(15): 3093–3102. 链接1

[ 8 ] Kashefi K, Lovley D R. Extending the upper temperature limit for life [J]. Science, 2003, 301(5635): 934. 链接1

[ 9 ] Xie W, Wang F, Guo L, et al. Comparative metagenomics of microbial communities inhabiting deep-sea hydrothermal vent chimneys with contrasting chemistries [J]. ISME Journal, 2011, 5(3): 414–426. 链接1

[10] Bourbonnais A, Juniper K, Butterfield D A, et al. Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge [J]. Biogeosciences Discussions, 2012, 9(4): 4177–4223. 链接1

[11] 王春生, 杨俊毅, 张东声, 等. 深海热液生物群落研究综述 [J]. 厦 门大学学报(自然科学版), 2006, 45(2): 141–149. Wang C S, Yang J Y, Zhang D S, et al. A review on deep-sea hydrothermal vent communities [J]. Journal of Xiamen University (Natural Science Edition), 2006, 45(2): 141–149.
Wang C S, Yang J Y, Zhang D S, et al. A review on deep-sea hydrothermal vent communities [J]. Journal of Xiamen University (Natural Science Edition), 2006, 45(2): 141–149. Chinese. 链接1

[12] Sievert S M, Hügler M, Taylor C D, et al. Sulfur oxidation at deepsea hydrothermal vents [M]. Berlin: Springer, 2008.

[13] Logan G A, Jones A T, Kennard J M, et al. Australian offshore natural hydrocarbon seepage studies, a review and re-evaluation [J]. Marine and Petroleum Geology, 2010, 27(1): 26–45. 链接1

[14] Tryon M D, Brown K M. Complex flow patterns through Hydrate Ridge and their impact on seep biota [J]. Geophysical Research Letters, 2001, 28(14): 2863–2866. 链接1

[15] 陈忠, 杨华平, 黄奇瑜, 等. 海底甲烷冷泉特征与冷泉生态系统 的群落结构 [J]. 热带海洋学报, 2007, 26(6): 73–82. Chen Z, Yang H P, Huang Q Y, et al. Characteristics of cold seeps and structures of chemoautosynthesis-based communities in seep sediments [J]. Journal of Tropical Oceanography, 2007, 26(6): 73–82.
Chen Z, Yang H P, Huang Q Y, et al. Characteristics of cold seeps and structures of chemoautosynthesis-based communities in seep sediments [J]. Journal of Tropical Oceanography, 2007, 26(6): 73–82. Chinese. 链接1

[16] 赵美霞, 余克服. 冷水珊瑚礁研究进展与评述 [J]. 热带地理, 2016, 36(1): 94–100. Zhao M X, Yu K F. A review of recent research on cold-water coral reefs [J]. Tropical Geography, 2016, 36(1): 94–100.
Sahling H., Rickert D., Lee R.W., et al., Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin[J]. NE Pacific. 2002. 231: 121–138. 链接1

[17] 张均龙, 徐奎栋. 海山生物多样性研究进展与展望 [J]. 地球科 学进展, 2013, 28(11): 1209–1216. Zhang J L, Xu K D. Progress and prospects in seamount biodiversity [J]. Advances in Earth Science, 2013, 28(11): 1209–1216.
Zhao M X, Yu K F. A review of recent research on cold-water coral reefs [J]. Tropical Geography, 2016, 36(1): 94–100. Chinese. 链接1

[18] Genin A, Dayton P K, Lonsdale P F, et al. Corals on seamount peaks provide evidence of current acceleration over deep-sea topography [J]. Nature, 1986, 322(6074): 59.
Zhang J L, Xu K D. Progress and prospects in seamount biodiversity [J]. Advances in Earth Science, 2013, 28(11): 1209–1216. Chinese. 链接1

[19] Samadi S, Bottan L, Macpherson E, et al. Seamount endemism questioned by the geographic distribution and population genetic structure of marine invertebrates [J]. Marine Biology, 2006, 149(6): 1463–1475.
Genin A, Dayton P K, Lonsdale P F, et al. Corals on seamount peaks provide evidence of current acceleration over deep-sea to pography [J]. Nature, 1986, 322(6074): 59. 链接1

[20] de Forges B R, Koslow J A, Poore G. Diversity and endemism of the benthic seamount fauna in the Southwest Pacific [J]. Nature, 2000, 405(6789): 944.
Samadi S, Bottan L, Macpherson E, et al. Seamount endemism questioned by the geographic distribution and population genetic structure of marine invertebrates [J]. Marine Biology, 2006, 149(6): 1463–1475. 链接1

[21] Genin A, Dower J F. Seamount plankton dynamics [M]. UK: Blackwell Publishing, 2007.
de Forges B R, Koslow J A, Poore G. Diversity and endemism of the benthic seamount fauna in the Southwest Pacific [J]. Nature, 2000, 405(6789): 944.

[22] Todo Y, Kitazato H, Hashimoto J, et al. Simple foraminifera flourish at the ocean’s deepest point [J]. Science, 2005, 307(5710): 689.
Genin A, Dower J F. Seamount plankton dynamics [M]. UK: Blackwell Publishing, 2007. 链接1

[23] Itoh M, Kawamura K, Kitahashi T, et al. Bathymetric patterns of meiofaunal abundance and biomass associated with the Kuril and Ryukyu trenches, western North Pacific Ocean [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2011, 58(1): 86–97.
Todo Y, Kitazato H, Hashimoto J, et al. Simple foraminifera flourish at the ocean’s deepest point [J]. Science, 2005, 307(5710): 689. 链接1

[24] Fujii T, Kilgallen N M, Rowden A A, et al. Deep-sea amphipod community structure across abyssal to hadal depths in the Peru-Chile and Kermadec trenches [J]. Marine Ecology Progress Series, 2013, 492: 125–138.
Itoh M, Kawamura K, Kitahashi T, et al. Bathymetric patterns of meiofaunal abundance and biomass associated with the Kuril and Ryukyu trenches, western North Pacific Ocean [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2011, 58(1): 86–97. 链接1

[25] Danovaroa R, Gambia C, Croceb N D. Meiofauna hotspot in the Atacama Trench, eastern South Pacific Ocean [J]. Deep-Sea Research I, 2002, 49: 843–857.
Fujii T, Kilgallen N M, Rowden A, et al. Deep-sea amphipod community structure across abyssal to hadal depths in the Peru-Chile and Kermadec trenches [J]. Marine Ecology Progress Series, 2013, 492: 125–138. 链接1

[26] Schmidt C, Arbizu P M. Unexpectedly higher metazoan meiofauna abundances in the Kuril-Kamchatka Trench compared to the adjacent abyssal plains [J]. Deep-Sea Research II, 2015, 111: 60–75.
Danovaroa R, Gambia C, Croceb N D. Meiofauna hotspot in the Atacama Trench, eastern South Pacific Ocean [J]. Deep-Sea Research I, 2002, 49: 843–857. 链接1

[27] Jamieson A J, Lacey N C, Lorz A N, et al. The supergiant amphipod Alicella gigantea (Crustacea: Alicellidae) from hadal depths in the Kermadec Trench, SW Pacific Ocean [J]. Deep-Sea Research II, 2013, 92: 107–113.
Schmidt C, Arbizu P M. Unexpectedly higher metazoan meiofauna abundances in the Kuril-Kamchatka Trench compared to the adjacent abyssal plains [J]. Deep-Sea Research II, 2015, 111: 60–75. 链接1

[28] Wang K, Shen Y, Yang Y, et al. Morphology and genome of a snailfish from the Mariana Trench provide insights into deep-sea adaptation [J]. Nature Ecology & Evolution, 2019, 3: 823–833.
Jamieson A J, Lacey N C, Lorz A N, et al. The supergiant amphipod Alicella gigantea (Crustacea: Alicellidae) from hadal depths in the Kermadec Trench, SW Pacific Ocean [J]. Deep-Sea Research II, 2013, 92: 107–113. 链接1

[29] Devine J A, Baker K D, Haedrich R L. Fisheries: Deep-sea fishes qualify as endangered [J]. Nature, 2006, 439(7072): 29.
Wang K, Shen Y, Yang Y, et al. Morphology and genome of a snailfish from the Mariana Trench provide insights into deep-sea adaptation [J]. Nature Ecology & Evolution, 2019, 3: 823–833. 链接1

[30] Koslow J A. The silent deep: The discovery, ecology, and conservation of the deep sea [J]. Oceanography, 2007, 23(1): 228.
Devine J A, Baker K D, Haedrich R L. Fisheries: Deep-sea fishes qualify as endangered [J]. Nature, 2006, 439(7072): 29. 链接1

[31] Clark M R, Vinnichenko V I, Gordon J D, et al. Large-scale distant-water trawl fisheries on seamounts [J]. Seamounts: Ecology, Fisheries, and Conservation, 2007, 12: 361–399.
Koslow J A. The silent deep: The discovery, ecology, and conservation of the deep sea [J]. Oceanography, 2007, 23(1): 228. 链接1

[32] Watson R, Kitchingman A, Cheung W W. Catches from world seamount fisheries [M]. UK: Blackwell Publishing, 2007.
Clark M R, Vinnichenko V I, Gordon J D, et al. Large-scale distant-water trawl fisheries on seamounts [J]. Seamounts: Ecology, Fisheries, and Conservation, 2007, 12: 361–399.

[33] Baker K D, Devine J A, Haedrich R L. Deep-sea fishes in Canada’s Atlantic: Population declines and predicted recovery times [J]. Environmental Biology of Fishes, 2009, 85(1): 79.
Watson R, Kitchingman A, Cheung W. Catches from world sea mount fisheries [M]. UK: Blackwell Publishing, 2007. 链接1

[34] UNEP-WCMC, IUCN. 2018 United Nations list of protected areas. Supplement on protected area management effectiveness [R]. Cambridge: UNEP-WCMC, IUCN, 2018.
Baker K D, Devine J A, Haedrich R L. Deep-sea fishes in Canada’s Atlantic: Population declines and predicted recovery times [J]. Environmental Biology of Fishes, 2009, 85(1): 79.

[35] Takahashi S, Tanabe S, Kubodera T. Butyltin residues in deep-sea organisms collected from Suruga Bay, Japan [J]. Environmental Science & Technology, 1997, 31(11): 3103–3109.
UNEP-WCMC, IUCN. 2018 United Nations list of protected areas. Supplement on protected area management effectiveness [R]. Cambridge: UNEP-WCMC, IUCN, 2018. 链接1

[36] Van Cauwenberghe L, Vanreusel A, Mees J, et al. Microplastic pollution in deep-sea sediments [J]. Environmental Pollution, 2013, 182: 495–499.
Takahashi S, Tanabe S, Kubodera T. Butyltin residues in deep-sea organisms collected from Suruga Bay, Japan [J]. Environmental Science & Technology, 1997, 31(11): 3103–3109. 链接1

[37] Dasgupta S, Peng X T, Chen S, et al. Toxic anthropogenic pollutants reach the deepest ocean on Earth [J]. Geochemical Perspectives Letters, 2018 (7): 22–26.
Van Cauwenberghe L, Vanreusel A, Mees J, et al. Microplastic pollution in deep-sea sediments [J]. Environmental Pollution, 2013, 182: 495–499. 链接1

[38] Sarmiento J L, Hughes T M, Stouffer R J, et al. Simulated response of the ocean carbon cycle to anthropogenic climate warming [J]. Nature, 1998, 393(6682): 245.
Dasgupta S, Peng X T, Chen S, et al. Toxic anthropogenic pollutants reach the deepest ocean on Earth [J]. Geochemical Perspectives Letters, 2018 (7): 22–26. 链接1

[39] Matear R, Hirst A. Long-term changes in dissolved oxygen concentrations in the ocean caused by protracted global warming [J]. Global Biogeochemical Cycles, 2003, 17(4): 1125.
Sarmiento J L, Hughes T M, Stouffer R J, et al. Simulated response of the ocean carbon cycle to anthropogenic climate warming [J]. Nature, 1998, 393(6682): 245. 链接1

[40] Shaffer G, Olsen S M, Pedersen J O P. Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels [J]. Nature Geoscience, 2009, 2(2): 105.
Matear R, Hirst A. Long-term changes in dissolved oxygen concentrations in the ocean caused by protracted global warming [J]. Global Biogeochemical Cycles, 2003, 17(4): 1125. 链接1

[41] Whitney F A, Freeland H J, Robert M. Persistently declining oxygen levels in the interior waters of the eastern subarctic Pacific [J]. Progress in Oceanography, 2007, 75(2): 179–199.
Shaffer G, Olsen S M, Pedersen J O P. Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels [J]. Nature Geoscience, 2009, 2(2): 105. 链接1

[42] Wishner K, Levin L, Gowing M, et al. Involvement of the oxygen minimum in benthic zonation on a deep seamount [J]. Nature, 1990, 346(6279): 57.
Whitney F A, Freeland H J, Robert M. Persistently declining oxygen levels in the interior waters of the eastern subarctic Pacific [J]. Progress in Oceanography, 2007, 75(2): 179–199. 链接1

[43] Gibson R, Atkinson R. Oxygen minimum zone benthos: Adaptation and community response to hypoxia [J]. Oceanography and Marine Biology, 2003, 41: 1–45.
Wishner K, Levin L, Gowing M, et al. Involvement of the oxygen minimum in benthic zonation on a deep seamount [J]. Nature, 1990, 346(6279): 57. 链接1

[44] Stramma L, Schmidtko S, Levin L A, et al. Ocean oxygen minima expansions and their biological impacts [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2010, 57(4): 587–595.
Gibson R, Atkinson R. Oxygen minimum zone benthos: Adaptation and community response to hypoxia [J]. Oceanography and Marine Biology, 2003, 41: 1–45. 链接1

[45] Koslow J A, Auster P, Bergstad O A, et al. Biological communities on seamounts and other submarine features potentially threatened by disturbance [M]. New York: United Nations, 2016.
Stramma L, Schmidtko S, Levin L A, et al. Ocean oxygen minima expansions and their biological impacts [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2010, 57(4): 587–595. 链接1

[46] Koslow J A, Goericke R, Lara-Lopez A, et al. Impact of declining intermediate-water oxygen on deepwater fishes in the California Current [J]. Marine Ecology Progress Series, 2011, 436: 207–218.
Koslow J A, Auster P, Bergstad O A, et al. Biological communities on seamounts and other submarine features potentially threatened by disturbance [M]. New York: United Nations, 2016. 链接1

[47] Glover A G, Smith C R. The deep-sea floor ecosystem: Current status and prospects of anthropogenic change by the year 2025 [J]. Environmental Conservation, 2003, 30(3): 219–241.
Koslow J A, Goericke R, Lara-Lopez A, et al. Impact of declining intermediate-water oxygen on deepwater fishes in the California Current [J]. Marine Ecology Progress Series, 2011, 436: 207–218. 链接1

[48] Clark M R, Rowden A A, Schlacher T, et al. The ecology of seamounts: Structure, function, and human impacts [J]. Annual Review of Marine Science, 2010, 2: 253–278.
Glover A G, Smith C R. The deep-sea floor ecosystem: Current status and prospects of anthropogenic change by the year 2025 [J]. Environmental Conservation, 2003, 30(3): 219–241. 链接1

[49] Leathwick J, Moilanen A, Francis M, et al. Novel methods for the design and evaluation of marine protected areas in offshore waters [J]. Conservation Letters, 2008, 1(2): 91–102.
Clark M R, Rowden A, Schlacher T, et al. The ecology of seamounts: Structure, function, and human impacts [J]. Annual Review of Marine Science, 2010, 2: 253–278. 链接1

[50] MacArthur R H, Wilson E O. An equilibrium theory of insular zoogeography [J]. Evolution, 1963, 17(4): 373–387.
Leathwick J, Moilanen A, Francis M, et al. Novel methods for the design and evaluation of marine protected areas in offshore waters [J]. Conservation Letters, 2008, 1(2): 91–102. 链接1

[51] MacArthur R H, Wilson E O. The theory of island biogeography [M]. New Jersey: Princeton University Press, 1967.
MacArthur R H, Wilson E O. An equilibrium theory of insular zoogeography [J]. Evolution, 1963, 17(4): 373–387.

相关研究