期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2019年 第21卷 第6期 doi: 10.15302/J-SSCAE-2019.06.007

极地动物基因资源研究现状与发展战略

1. 中国水产科学研究院黄海水产研究所,山东青岛266071;

2. 青岛海洋科学与技术试点国家实验室海洋渔业科学与食物产出过程功能实验室,山东青岛266237

资助项目 :中国工程院咨询项目 “海洋强国战略研究2035” (2018-ZD-08) 收稿日期: 2019-06-20 修回日期: 2019-08-26

下一篇 上一篇

摘要

本文主要从基因组和转录组层面分析了极地动物基因资源的研究现状,梳理了本领域研究中存在的问题,并提出了未来发展战略。极地动物基因组测序起步较晚,迄今只完成了 13种极地动物的全基因组测序。在转录组研究方面,人们对极地的 31个物种进行了转录组测序,并在以下四个方向重点开展了研究:环境适应性研究;污染物应激反应的分子机制研究;不同发育阶段或不同组织中的转录组分析;功能基因挖掘。本领域研究由于起步晚,研究广度和深度都有待加强,但极地动物的基因资源研究具有战略意义。建议国家设立“极地动物基因资源发掘与应用”重点研发计划专项,围绕极地渔业动物特殊性状遗传解析、特有基因功能分析和基因工程产品研发等开展研究。

图片

图 1

图 2

参考文献

[ 1 ] Star B, Nederbragt A J, Jentoft S, et al. The genome sequence of Atlantic cod reveals a unique immune system [J]. Nature, 2011, 477(7363): 207–210. 链接1

[ 2 ] Miller W, Schuster S C, Welch A J,et al. Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change [J]. Proceedings of the National Academy of Sciences of the United States of America. 2012, 109(36): E2382– 2390. 链接1

[ 3 ] Shin S C, Ahn D H, Kim S J C, et al. The genome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment [J]. Genome Biololgy, 2014, 15(9): 468.
Shin S C, Ahn D H, Kim S J C, et al. The genome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment [J]. Genome Biology, 2014, 15(9): 468. 链接1

[ 4 ] Yim H S, Cho Y S, Guang X, et al, Minke whale genome and aquatic adaptation in cetaceans [J]. Nature Genetics, 2014, 46(1): 88–92. 链接1

[ 5 ] Kelley J L, Peyton J T, Fiston-Lavier A S, et al, Compact genome of the Antarctic midge is likely an adaptation to an extreme environment [J]. Nature Communications, 2014, 5: 4611. 链接1

[ 6 ] Li C, Zhang Y, Li J, et al. Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment [J]. GigaScience, 2014, 3(1): 27. 链接1

[ 7 ] Lien S, Koop B F, Sandve S R, et al. The Atlantic salmon genome provides insights into rediploidization [J]. Nature, 2016, 533(7602): 200–205. 链接1

[ 8 ] Ahn D H, Shin S C, Kim B M, et al. Draft genome of the Antarctic dragonfish, Parachaenichthys charcoti [J]. GigaScience, 2017, 6(8): 1–6. 链接1

[ 9 ] Jones S J M, Taylor G A, Chan S, et al. The genome of the Beluga whale (Delphinapterus leucas) [J]. Genes (Basel), 2017, 8(12): Pii:E378. 链接1

[10] Kang S, Ahn D H, Lee J H, et al, The genome of the Antarctic-endemic copepod, Tigriopus kingsejongensis [J]. GigaScience, 2017, 6(1): 1–9. 链接1

[11] Christensen K A, Rondeau E B, Minkley D R, et al. The Arctic charr (Salvelinus alpinus) genome and transcriptome assembly [J]. Plos One, 2018, 13(9): e0204076. 链接1

[12] Chen L B , Lu Y, Li W H, et al. The genomic basis for colonizing the freezing Southern Ocean revealed by Antarctic toothfish and Patagonian robalo genomes [J]. GigaScience, 2019, 8: 1–16 链接1

[13] Liu C L, Huang X H. Transcriptome-wide analysis of DEADbox RNA helicase gene family in an Antarctic psychrophilic alga Chlamydomonas sp ICE-L [J]. Extremophiles, 2015, 19(5): 921–931. 链接1

[14] Thorne M A S, Kagoshima H, Clark M S, et al. Molecular analysis of the Cold Tolerant Antarctic Nematode, Panagrolaimus davidi [J]. Plos One, 2014, 9(8): e104526. 链接1

[15] Kim H S, Lee B Y, Han J, et al. De novo assembly and annotation of the Antarctic copepod (Tigriopus kingsejongensis) transcriptome [J]. Marine Genomics, 2016, 28: 37. 链接1

[16] Bilyk K T, Cheng C H C. Model of gene expression in extreme cold-reference transcriptome for the high-Antarctic cryopelagic notothenioid fish Pagothenia borchgrevinki [J]. BMC Genomics, 2013, 14: 634. 链接1

[17] Chen Z, Cheng C H C, Zhang J, et al. Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(35): 12944. 链接1

[18] Coppe A, Agostini C, Marino I A M, et al. Genome evolution in the cold: Antarctic icefish muscle transcriptome reveals selective duplications increasing mitochondrial function [J]. Genome Biology and Evolution, 2012, 5 (1): 45. 链接1

[19] Papetti C, Harms L, Windisch H S, et al. A first insight into the spleen transcriptome of the notothenioid fish Lepidonotothen nudifrons: Resource description and functional overview [J]. Marine Genomics, 2015, 24: 237. 链接1

[20] Cocca E, Ratnayake-lecamwasam M, Parker S K, et al. Genomic remnants of alpha-globin genes in the hemoglobinless antarctic icefishes [J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92: 1817–1821. 链接1

[21] O’Brien K M, Mueller I A. The unique mitochondrial form and function of Antarctic channichthyid icefishes [J]. Integrative and Comparative Biology, 2010, 50: 993–1008. 链接1

[22] Xu Q, Cai C, Hu X, et al. Evolutionary suppression of erythropoiesis via the modulation of TGF-β signalling in an Antarctic icefish [J]. Molecular Ecology, 2015, 24: 4664–4678. 链接1

[23] Shin S C, Kim S J, Lee J K, et al. Transcriptomics and comparative analysis of three Antarctic notothenioid fishes [J]. Plos One, 2012, 7(8): e43762. 链接1

[24] Coppe A, Agostini C, Marino I A, et al. Genome evolution in the cold: Antarctic icefish muscle transcriptome reveals selective duplications increasing mitochondrial function [J]. Genome Biology and Evolution, 2013, 5: 45–60. 链接1

[25] Clark M S, Thorne M A S, Toullec J Y, et al. Antarctic krill 454 pyrosequencing reveals chaperone and stress transcriptome [J]. Plos One, 2011, 6(1): e15919. 链接1

[26] Meyer B, Martini P, Biscontin A, et al. Pyrosequencing and de novo assembly of Antarctic krill (Euphausia superba) transcriptome to study the adaptability of krill to climate-induced environmental changes [J]. Molecular Ecology Resource, 2015, 15: 6. 链接1

[27] Buckley B A, Somero G N. cDNA microarray analysis reveals the capacity of the cold-adapted Antarctic fish Trematomus bernacchii to alter gene expression in response to heat stress [J]. Polar Biology, 2009, 32 (3): 403. 链接1

[28] Huth T J, Place S P. Transcriptome wide analyses reveal a sustained cellular stress response in the gill tissue of Trematomus bernacchii after acclimation to multiple stressors [J]. BMC Genomics, 2016, 17: 127. 链接1

[29] Andersen Ø, Frantzen M, Rosland M, et al. Effects of crude oil exposure and elevated temperature on the liver transcriptome of polar cod (Boreogadus saida) [J]. Aquatic Toxicology, 2015, 165: 9. 链接1

[30] Kang S, Kim S, Park H. Transcriptome of the Antarctic amphipod Gondogeneia antarctica and its response to pollutant exposure [J]. Marine Genomics, 2015, 24: 253. 链接1

[31] Rhee J S R, Kim B M, Choi B S, et al. Transcriptome information of the Arctic green sea urchin and its use in environmental monitoring [J]. Polar Biology, 2014, 37 (8): 1133. 链接1

[32] De Pittà C, Bertolucci C, Mazzotta G M, et al. Systematic sequencing of mRNA from the Antarctic krill (Euphausia superba) and first tissue specific transcriptional signature [J]. BMC Genomics, 2008, 9: 45. 链接1

[33] Seear P J, Tarling G A, Burns G, et al. Differential gene expression during the moult cycle of Antarctic krill (Euphausia superba) [J]. BMC Genomics, 2010, 11: 582. 链接1

[34] Burns G, Thorndyke M C, Peck L S, et al. Transcriptome pyrosequencing of the Antarctic brittle star Ophionotus victoriae [J]. Marine Genomics, 2013, 9: 9. 链接1

[35] Gudbrandsson J, Ahi E P, Franzdottir S R, et al. The developmental transcriptome of contrasting Arctic charr (Salvelinus alpinus) morphs [J]. F1000Research, 2015, 4: 136. 链接1

[36] Magnanou E, Noirot C, Falcón J, et al. Sequencing and characterization of a multi-organ Arctic charr transcriptome: A toolbox for investigating polymorphism and seasonal life in a high Arctic fish [J]. Marine Genomics, 2016, 29: 45. 链接1

[37] Kelley J L, Aagaard J E, MacCoss M J, et al. Functional diversification and evolution of antifreeze proteins in the antarctic fish Lycodichthys dearborni [J]. Journal of Molecular Evolution, 2010, 71: 111–118. 链接1

[38] Nicodemus-Johnson J, Silic S, Ghigliotti L, et al. Assembly of the antifreeze glycoprotein/trypsinogen-like protease genomic locus in the Antarctic toothfish Dissostichus mawsoni (Norman) [J]. Genomics, 2011, 98(3): 194–201. 链接1

[39] Lee J K, Kim Y J, Park K S, et al. Molecular and comparative analyses of type IV antifreeze proteins (AFPIVs) from two Antarctic fishes, Pleuragramma antarcticum and Notothenia coriiceps [J]. Comparative Biochemistry and Physiology B-Biochemisty & Molecular Biology, 2011, 159(4): 197–205. 链接1

[40] Cao L X, Huang Q, Wu Z C, et al. Neofunctionalization of zona pellucida proteins enhances freeze-prevention in the eggs of Antarctic notothenioids [J]. Nature Communications, 2016, 7(1): 12987. 链接1

[41] Oreste U, Coscia M. Specific features of immunoglobulin VH genes of the Antarctic teleost Trematomus bernacchii [J]. Gene, 2002, 295(2): 199–204. 链接1

[42] Capriglione T, Odierna G, Caputo V, et al. Characterization of a Tc1-like transposon in the Antarctic ice-fish, Chionodraco hamatus [J]. Gene, 2002, 295(2): 193–198. 链接1

[43] Small D J, Moylan T, Vayda M E, et al. The myoglobin gene of the Antarctic icefish, Chaenocephalus aceratus, contains a duplicated TATAAAA sequence that interferes with transcription [J]. Journal of Experimental Biology, 2003, 206: 131–139. 链接1

[44] Kim M, Ahn I Y, Kim H J, et al. Molecular characterization and induction of heat shock protein 90 in the Antarctic bivalve Laternula elliptica [J]. Cell Stress & Chaperons, 2009, 14(4): 363–370. 链接1

[45] Place S P, Hofmann G E. Constitutive expression of a stressinducible heat shock protein gene, HSP70, in phylogenetically distant Antarctic fish [J]. Polar Biology, 2005, 28(4): 261–267. 链接1

[46] Clark M S, Fraser K P P, Burns G, et al. The HSP70 heat shock response in the Antarctic fish Harpagifer antarcticus [J]. Polar Biology, 2008, 31(2): 171–180. 链接1

[47] Ahi E P, Steinhäuser S S, Pálsson A, et al. Differential expression of the aryl hydrocarbon receptor pathway associates with craniofacial polymorphism in sympatric Arctic charr [J]. EvoDevo, 2015, 6: 27.
Ahi E P, Steinhäuser S, Pálsson A, et al. Differential expression of the aryl hydrocarbon receptor pathway associates with craniofacial polymorphism in sympatric Arctic charr [J]. EvoDevo, 2015, 6: 27. 链接1

[48] Aluru N, Jorgensen E H, Maule A G, et al. PCB disruption of the hypothalamus-pituitary-interrenal axis involves brain glucocorticoid receptor downregulation in anadromous Arctic charr [J]. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 2004, 287(4): R787–793. 链接1

[49] Miyazaki T, Iwami T. Molecular cloning of cDNA encoding red opsin gene in the retinas of five Antarctic notothenioid fishes [J]. Polar Biology, 2012, 35(5): 775–783. 链接1

[50] Borley K A, Sidell B D. Evolution of the myoglobin gene in Antarctic icefishes (Channichthyidae) [J]. Polar Biology, 2011, 34(5): 659–665. 链接1

相关研究