期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2020年 第22卷 第2期 doi: 10.15302/J-SSCAE-2020.02.018

低轨卫星导航增强技术——机遇与挑战

 1. 武汉大学测绘遥感信息工程国家重点实验室,武汉 430079;

2. 地球空间信息技术协同创新中心,武汉 430079;

3. 武汉大学电子信息学院,武汉 430079

资助项目 :中国工程院咨询项目“天基信息实时服务系统( PNTRC)发展战略研究” (2017-ZD-01) 收稿日期: 2019-09-27 修回日期: 2020-02-28 发布日期: 2020-04-03

下一篇 上一篇

摘要

在我国北斗卫星导航系统(北斗系统)初步实现全球能力覆盖的背景下,低轨卫星导航增强(LEO-NA)技术因其易于与北斗系统协同来提高全球自主导航精度、拓展全球卫星导航应用市场的巨大潜力而成为研究热点。本文梳理了发展导航增强技术的现实需求,分析了导航增强技术以及LEO-NA技术的发展现状,重点介绍了我国“珞珈一号”关键技术在轨验证的进展情况。在此基础上,研判了LEO-NA系统未来发展面临的技术挑战,如导航增强频率的兼容互操作、通信/导航信号一体化设计、低轨卫星星座管控、高动态导航增强信号捕获与跟踪、与现有导航系统的融合等。研究提出,针对我国发展LEO-NA技术的迫切需求,可着重在以下方面开展工作:加强系统顶层设计并充分利用现有资源,注重LEO-NA系统与北斗系统的协同增效;促进通信、导航、遥感功能融合,分步骤分层次构建天基信息实时服务系统;将卫星工程与地面基础设施统一规划考虑,实行星地一体化建设。

图片

图 1

图 2

图 3

图 4

图 5

参考文献

[ 1 ] 郭树人, 蔡洪亮, 孟轶男, 等. 北斗三号导航定位技术体制与服 务性能 [J]. 测绘学报, 2019, 48(7): 810–821. Guo S R, Cai H L, Meng Y N, et al. BDS-3 RNSS technical characteristics and service performance [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(7): 810–821.
Guo S R, Cai H L, Meng Y N, et al. BDS-3 RNSS technical characteristics and service performance [J]. Acta Geodaetica etCartographica Sinica, 2019, 48(7): 810–821. Chinese. 链接1

[ 2 ] 杨元喜. 综合PNT体系及其关键技术 [J]. 测绘学报, 2016, 45(5): 505–510. Yang Y X. Concepts of comprehensive PNT and related key technologies [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5): 505–510.
Yang Y X. Concepts of comprehensive PNT and related key technologies [J]. Acta Geodaetica et Cartographica Sinica, 2016,45(5): 505–510. Chinese. 链接1

[ 3 ] Parkinson B W. Assured PNT for our future: PTA [EB/OL]. (2014- 09-01) [2018-08-21]. https://www.gpsworld.com/assured-pnt-forour-future-pta/. 链接1

[ 4 ] 杨元喜. 弹性PNT基本框架 [J]. 测绘学报, 2018, 47(7): 893–898. Yang Y X. Resilient PNT concept frame [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7): 893–898.
Yang Y X. Resilient PNT concept frame [J]. Acta Geodaetica etCartographica Sinica, 2018, 47(7): 893–898. Chinese. 链接1

[ 5 ] 李德仁, 沈欣, 李迪龙, 等. 论军民融合的卫星通信、遥感、导航 一体天基信息实时服务系统 [J]. 武汉大学学报(信息科学版), 2017, 42(11): 1501–1505. Li D R, Shen X, Li D L, et al. On civil-military integrated spacebased real-time information service system [J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1501– 1505.
Li D R, Shen X, Li D L, et al. On civil-military integrated space based real-time information service system [J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1501–1505. Chinese. 链接1

[ 6 ] 李德仁, 沈欣, 龚健雅, 等. 论我国空间信息网络的构建 [J]. 武 汉大学学报(信息科学版), 2015, 40(6): 711–715, 766. Li D R, Shen X, Gong J Y, et al. On construction of China’s space information network [J]. Geomatics and Information science of Wuhan University, 2015, 40(6): 711–715, 766.
Li D R, Shen X, Gong J Y, et al. On construction of China’s space information network [J]. Geomatics and Information science ofWuhan University, 2015, 40(6): 711–715, 766. Chinese. 链接1

[ 7 ] 郭树人, 刘成, 高为广, 等. 卫星导航增强系统建设与发展 [J]. 全 球定位系统, 2019, 44(2): 1–12. Guo S R, Liu C, Gao W G, et al. Construction and development of satellite navigation augmentation systems [J]. GNSS World of China, 2019, 44(2): 1–12.
Guo S R, Liu C, Gao W G, et al. Construction and development of satellite navigation augmentation systems [J]. GNSS World of China, 2019, 44(2): 1–12. Chinese. 链接1

[ 8 ] 陈锐志, 王磊, 李德仁, 等. 导航与遥感技术融合综述 [J]. 测绘 学报, 2019, 48(12): 1507–1522. Chen R Z, Wang L, Li D R, et al. A survey on the fusion of the navigation and the remote sensing techniques [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1507–1522.
Chen R Z, Wang L, Li D R, et al. A survey on the fusion of the navigation and the remote sensing techniques [J]. Acta Geodaeticaet Cartographica Sinica, 2019, 48(12): 1507–1522. Chinese. 链接1

[ 9 ] 王磊, 陈锐志, 李德仁, 等. 珞珈一号低轨卫星导航增强系统 信号质量评估 [J]. 武汉大学学报(信息科学版), 2018, 43(12): 2191–2196. Wang L, Chen R Z, Li D R, et al. Quality assessment of the LEO navigation augmentation signals from Luojia-1A satellite [J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2191–2196.
Wang L, Chen R Z, Li D R, et al. Quality assessment of the LEO navigation augmentation signals from Luojia-1A satellite [J]. Geomatics and Information Science of Wuhan University, 2018,43(12): 2191–2196. Chinese. 链接1

[10] Shi C, Zheng F, Lou Y D, et al. National BDS augmentation service system (NBASS) of China: Progress and assessment [J]. Remote Sensing, 2017, 9(8): 1–16. 链接1

[11] 赵爽. 国外卫星导航星基增强系统发展概况 [J]. 卫星应用, 2013 (5): 58–61. Zhao S. The development on satellite-based augmentation system in foreign countries [J]. Satellite Application, 2013 (5): 58–61.
Zhao S. The development on satellite-based augmentation system in foreign countries [J]. Satellite Application, 2013 (5): 58– 61. Chinese. 链接1

[12] Bar-Sever Y, Young L, Stocklin F, et al. The NASA global differential GPS system (GDGPS) and the TDRSS augmentation service for satellites (TASS) [C]. Noorwijk: ESA 2nd Workshop on Navigation User Equipment, 2004.

[13] Visser I H. Omnistar HP worldwide positioning service [J]. Interexpo Geo-Siberia, 2006, 1(2): 108–116. 链接1

[14] Chen X M, Allison T, Cao W, et al. Trimble RTX, An innovative new approach for network RTK [C]. Portland: ION GNSS+ 2011, 2011. 链接1

[15] 郭四清, 张丁. 星基增强系统“中国精度”与CORS网的对比分析 [J]. 地理空间信息, 2016, 14(5): 1–4. Guo S Q, Zhang D. Comparison analysis of satellite-based augmentation system “China CM” and CORS [J]. Geospatial Information, 2016, 14(5): 1–4.
Guo S Q, Zhang D. Comparison analysis of satellite-based augmentation system “China CM” and CORS [J]. Geospatial Information, 2016, 14(5): 1–4. Chinese. 链接1

[16] Jiang W, Li Y, Rizos C. Locata-based precise point positioning for kinematic maritime applications [J]. GPS Solutions, 2014, 19(1): 117–128. 链接1

[17] Montillet J-P, Roberts G W, Hancock C, et al. Deploying a Locata network to enable precise positioning in urban canyons [J]. Journal of Geodesy, 2009, 83(2): 91–103. 链接1

[18] Zhou Z B, Yang L, Li Y. An adaptive dual Kalman filtering algorithm for Locata/GPS/INS integrated navigation [C]. Wuhan: China Satellite Navigation Conference (CSNC) 2013 Proceedings, 2013. 链接1

[19] Choy S, Harima K, Li Y, et al. GPS precise point positioning with the Japanese Quasi-Zenith satellite system LEX augmentation corrections [J]. Journal of Navigation, 2015, 68(4): 1–15. 链接1

[20] 杨宇飞, 杨元喜, 徐君毅, 等. 低轨卫星对导航卫星星座轨道 测定的增强作用 [J]. 武汉大学学报(信息科学版), 2020, 45(1): 46–52. Yang Y F, Yang Y X, Xu J Y, et al. Navigation satellites orbit determination with the enhancement of low earth orbit satellites [J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 46–52.
Yang Y F, Yang Y X, Xu J Y, et al. Navigation satellites orbit determination with the enhancement of low earth orbit satellites [J].Geomatics and Information Science of Wuhan University, 2020,45(1): 46–52. Chinese. 链接1

[21] 曾添, 隋立芬, 贾小林, 等. 风云3C增强北斗定轨试验结果与分 析 [J]. 测绘学报, 2017, 46(7): 824–833. Zeng T, Sui L F, Jia X L, et al. Results and analysis of BDS precise orbit determination with the enhancement of Fengyun-3C [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(7): 824–833.
Zeng T, Sui L F, Jia X L, et al. Results and analysis of BDS precise orbit determination with the enhancement of Fengyun-3C [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(7): 824–833. Chinese. 链接1

[22] Enge P K, Talbot N C, San J. Method and reciever using a low earth orbiting satellite signal to augment the global positioning system: US5812961 [P/OL] 1995-12-28 [2019-06-01]. https:// patents.google.com/patent/US5812961A/en. 链接1

[23] Whelan D, Enge P, Gutt G M. iGPS: Integrated nav & com augmentation of GPS [C]. Stanford: 2010 PNT Challenges and Opportunities Symposium, 2010.

[24] Tan Z Z, Qin H L, Cong L, et al. New method for positioning using IRIDIUM satellite signals of opportunity [J]. IEEE Access, 2019 (7): 83412–83423. 链接1

[25] 秦红磊, 谭滋中, 丛丽, 等. 基于铱星机会信号的定位技术研究 [J]. 北京航空航天大学学报, 2019, 45(9): 1691–1699. Qin H L, Tan Z Z, Cong L, et al. Positioning technology based on IRIDIUM signals of opportunity [J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1691–1699.
Qin H L, Tan Z Z, Cong L, et al. Positioning technology based on IRIDIUM signals of opportunity [J]. Journal of Beijing Universityof Aeronautics and Astronautics, 2019, 45(9): 1691–1699. Chinese. 链接1

[26] Reid T, Neish A, Walter T, et al. Leveraging commercial broadband LEO constellations for navigation [C]. Portland: ION GNSS+ 2016, 2016. 链接1

[27] Reid T, Walter T, Enge P, et al. Orbital representations for the next generation of satellite-based augmentation systems [J]. GPS Solutions, 2016, 20(4): 737–750. 链接1

[28] 刘仁甫, 田世伟, 李广侠, 等. Iridium/GPS导航增强系统及性能 仿真 [C]. 上海: 第二届中国卫星导航学术年会电子文集, 2011. Liu R F, Tian S W, Li G X, et al. Iridium/GPS navigation enhancement system and performance simulation [C]. Shanghai: Electronic Collection of the 2nd China Satellite Navigation Conference, 2011.
Liu R F, Tian S W, Li G X, et al. Iridium/GPS navigation enhancement system and performance simulation [C]. Shanghai:Electronic Collection of the 2nd China Satellite Navigation Conference, 2011. Chinese. 链接1

[29] 杨波. 低轨卫星增强导航技术研究 [D]. 成都: 电子科技大学(硕 士学位论文), 2017. Yang B. Research on enhanced navigation technologies based on low earth orbit satellite [D]. Chengdu: University of Electronic Science and Technology of China (Master’s thesis), 2017.
Yang B. Research on enhanced navigation technologies based on low earth orbit satellite [D]. Chengdu: University of Electronic Science and Technology of China (Master’s thesis), 2017. Chinese. 链接1

[30] 卓永宁. 低轨小卫星移动通信与定位关键技术研究 [D]. 成都: 电子科技大学(博士学位论文), 2006. Zhuo Y N. Research on the key technologies for LEO small satellite communication and positioning [D]. Chengdu: University of Electronic Science and Technology of China (Doctoral dissertation), 2006.
Zhuo Y N. Research on the key technologies for LEO small satellite communication and positioning [D]. Chengdu: University of Electronic Science and Technology of China (Doctoral dissertation), 2006. Chinese. 链接1

[31] 常江, 田世伟, 李广侠, 等. iGPS抗干扰性能研究 [C]. 上海: 第二 届中国卫星导航学术年会电子文集, 2011. Chang J, Tian S W, Li G X, et al. Research on anti-interference performance of iGPS [C]. Shanghai: Electronic Collection of the 2nd China Satellite Navigation Conference, 2011.
Chang J, Tian S W, Li G X, et al. Research on anti-interference performance of iGPS [C]. Shanghai: Electronic Collection of the2nd China Satellite Navigation Conference, 2011. Chinese. 链接1

[32] 田世伟, 李广侠, 常江, 等. 基于铱星增强的GPS系统RAIM性能 [J]. 解放军理工大学学报(自然科学版), 2013, 14(3): 237–241. Tian S W, Li G X, Chang J, et al. Receiver autonomous integrity monitoring in iridium-augmented GPS [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2013, 14(3): 237–241.
Tian S W, Li G X, Chang J, et al. Receiver autonomous integrity monitoring in iridium-augmented GPS [J]. Journal of PLAUniversity of Science and Technology (Natural Science Edition),2013, 14(3): 237–241. Chinese. 链接1

[33] Ge H B, Li B F, Ge M R, et al. Initial assessment of precise point positioning with LEO enhanced global navigation satellite systems (LeGNSS) [J]. Remote Sensing, 2018, 10(7): 984. 链接1

[34] Li X X, Ma F J, Li X, et al. LEO constellation-augmented multiGNSS for rapid PPP convergence [J]. Journal of Geodesy, 2019,93(1): 749–764. 链接1

[35] 方善传, 杜兰, 周培元, 等. 低轨导航增强卫星的轨道状态型星 历参数设计 [J]. 测绘学报, 2016, 45(8): 904–910. Fang S C, Du L, Zhou P Y, et al. Orbital list ephemerides design of LEO navigation augmentation satellite [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(8): 904–910.
Fang S C, Du L, Zhou P Y, et al. Orbital list ephemerides design of LEO navigation augmentation satellite [J]. Acta Geodaetica etCartographica Sinica, 2016, 45(8): 904–910. Chinese. 链接1

[36] Xie X, Geng T, Zhao Q, et al. Design and validation of broadcast ephemeris for low earth orbit satellites [J]. GPS Solutions, 2018, 22(2): 54. 链接1

[37] Wang L, Chen R Z, Li D R, et al. Initial assessment of the LEO based navigation signal augmentation system from Luojia-1A satellite [J]. Sensors, 2018, 18(11): 3919. 链接1

[38] 蒙艳松. 鸿雁星座低轨导航增强系统系统进展及展望 [C]. 北 京: 第十届中国卫星导航年会, 2019. Meng Y S. The progress and future of the Hongyan LEO navigation augmentation system [C]. Beijing: The 10th China Satellite Navigation Conference, 2019.
Meng Y S. The progress and future of the Hongyan LEO navigation augmentation system [C]. Beijing: The 10th China Satellite Navigation Conference, 2019. Chinese.

[39] Wang L, Chen R Z, Xu B Z, et al. The challenges of LEO based navigation augmentation system—Lessons learned from Luojia1A satellite [C]. Beijing: The 10th China Satellite Navigation Conference, 2019. 链接1

[40] Rabinowitz M. A differential carrier-phase navigation system combining GPS with LEO for rapid resolution of integer cycle ambiguities [D]. Stanford: University of Stanford (Doctoral dissertation), 2001. 链接1

相关研究