期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2020年 第22卷 第3期 doi: 10.15302/J-SSCAE-2020.03.008

高亮度固体激光器技术发展研究

华北光电技术研究所固体激光技术重点实验室,北京 100015

资助项目 :中国工程院咨询项目“我国激光技术与应用 2035 发展战略研究” (2018-XZ-27) 收稿日期: 2020-03-28 修回日期: 2020-05-18 发布日期: 2020-05-27

下一篇 上一篇

摘要

激光推进、激光传能等重大科研方向对高亮度固体激光器技术提出了重大需求,使得相关研究持续成为国际关注焦点。本文阐述了高亮度固体激光器技术的宏观需求,梳理国内外的技术研究现状并总结发展趋势,凝练技术进一步发展所面临的问题;据此完成高亮度固体激光器的关键技术分析,并结合国情提出未来发展建议。板条激光器和光纤激光器由于具有突出优点成为研究热点,在单台激光器输出功率不断提升的同时,可配合光束合成方法来实现高亮度激光输出。研究表明,应着重推动新型激光材料、高端半导体激光泵浦源、高精度封装工艺、自适应光束控制、光束合成关键器件等方面的技术攻关,尽快形成核心技术体系;科学布局以表层增益板条激光器技术为代表的、具有良好发展潜力的固体激光器技术研究课题,加强共用基础技术研究与积淀,为未来固体激光器输出亮度、转换效率、功率质量比的持续提升奠定坚实基础。

参考文献

[ 1 ] 张凌. 固态工质激光推进的机理研究 [D]. 合肥: 中国科学技术 大学(博士学位论文), 2008. Zhang L. Mechanism Investigation of laser propulsion with solid propellant [D]. Hefei: University of Science and Technology of China (Doctoral dissertation), 2008.
Zhang L. Mechanism Investigation of laser propulsion with solid propellant [D]. Hefei: University of Science and Technology of China (Doctoral dissertation), 2008. Chinese. 链接1

[ 2 ] Kantrowitz A. Propulsion to orbit by ground-based lasers [J]. Astroautics and Aaeroautics, 1972, 10(5): 74–76. 链接1

[ 3 ] Marmo J, Injeyan H, Komine H, et al. Joint high power solid state laser program advancements at Northrop Grumman [C]. San Jose: Society of Photo-Optical Instrumentation Engineers, 2009. 链接1

[ 4 ] McNaught S J, Asman C P, Injeyan A, et al. 100-kW coherently combined Nd:YAG MOPA laser array [C]. San Jose: Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest, 2009.

[ 5 ] Goodno G D, Komine H, McNaught S J, et al. Coherent combination of high-power, zigzag slab lasers [J]. Optics Letters, 2006, 31(9): 1247–1249. 链接1

[ 6 ] Selinger M. Boeing fires new thin-disk laser, achieving solid-state laser milestone [EB/OL]. (2008-06-03) [2019-10-01]. http://www. boeing.com/news/releases/2008/q2/080603a_nr.html.

[ 7 ] Wilmington M A. Textron defense systems awarded funding for the DARPA HELLADS Program [EB/OL]. (2008-10-03) [2019- 10-01]. http://www.globalsecurity.org/military/systems/aircraft/ systems/hellads.html.

[ 8 ] Jeong Y C, Boyland A J, Sahu J K, et al. Multi-kilowatt singlemode ytterbium doped large-core fiber laser [J]. Journal of the Optical Society of Korea, 2009, 13(4): 416–422.

[ 9 ] Sabourdy D, Kermene V, Desfarges-berthelemot A, et al. Power scaling of fiber lasers with all-fibre interferometric cavity [J]. Electronics Letters, 2002, 38(14): 692–693. 链接1

[10] 王超, 唐晓军, 徐鎏婧, 等. 输出功率11 kW的高功率固体板条激 光器介质热分析 [J]. 中国激光, 2010, 37(11): 2807–2809. Wang C, Tang X J, Xu L J, et al. Investigation on thermal effect of high power slab laser with 11 kW [J]. Chinese Journal of Lasers, 2010, 37(11): 2807–2809.
Wang C, Tang X J, Xu L J, et al. Investigation on thermal effect of high power slab laser with 11 kW [J]. Chinese Journal of Lasers, 2010, 37(11): 2807–2809. Chinese. 链接1

[11] 李宁, 张伟桥, 刘洋, 等. Yb:YAG表层增益板条激光放大器的研 究 [J]. 中国激光, 2018, 45(11): 1–5. Li N, Zhang W Q, Liu Y, et al. Yb:YAG surface gain slab laser amplifier [J]. Chinese Journal of Lasers, 2018, 45(11): 1–5.
Li N, Zhang W Q, Liu Y, et al. Yb:YAG surface gain slab laser amplifier [J]. Chinese Journal of Lasers, 2018, 45(11): 1–5. Chinese. 链接1

[12] 唐淳. 高能固体激光系统光束质量主动校正技术 [C]. 成都: 第 四届大气光学及自适应光学研讨会, 2019. Tang C. Active beam quality control technology for high energy solid laser system [C]. Chengdu: The Fourth Symposium on the Development of Atmospheric Optics and Adaptive Optics, 2019.
Tang C. Active beam quality control technology for high energy solid laser system [C]. Chengdu: The Fourth Symposium on the Development of Atmospheric Optics and Adaptive Optics, 2019. Chinese.

[13] 郭亚丁. 高能固体激光自适应光学光束质量控制 [C]. 成都: 第 四届大气光学及自适应光学研讨会, 2019. Guo Y D. Beam quality control technology for high energy solid laser system [C]. Chengdu: The Fourth Symposium on the Development of Atmospheric Optics and Adaptive Optics, 2019.
Guo Y D. Beam quality control technology for high energy solid laser system [C]. Chengdu: The Fourth Symposium on the Development of Atmospheric Optics and Adaptive Optics, 2019. Chinese.

[14] 林宏奂, 唐选, 李成钰, 等. 全国产单纤激光系统获得10.6 kW激 光输出 [J]. 中国激光, 2018, 45(3): 329. Lin H H, Tang X, Li C Y, et al. Home-made single-fiber laser system achieved 10.6 kW laser output [J]. Chinese Journal of Lasers, 2018, 45(3): 329.
Lin H H, Tang X, Li C Y, et al. Home-made single-fiber laser system achieved 10.6 kW laser output [J]. Chinese Journal of Lasers, 2018, 45(3): 329. Chinese. 链接1

[15] Lin A X, Zhan H, Peng K, et al. 10 kW-level pump-gain intergrated functional laser fiber [C]. Hangzhou: 2018 Asia Communications and Photonics Conference (ACP), 2018. 链接1

[16] 巩马理, 闫平, 肖启榕. 高功率光纤激光器技术与发展未来 [C]. 威海: 先进高功率高能激光技术与应用研讨会, 2017. Gong M L, Yan P, Xiao Q R. High power fiber laser technology and future development [C]. Weihai: Seminar on Advanced High Power High Energy Laser Technology and Application, 2017.
Gong M L, Yan P, Xiao Q R. High power fiber laser technology and future development [C]. Weihai: Seminar on Advanced High Power High Energy Laser Technology and Application, 2017. Chinese.

[17] 刘泽金, 周朴, 马鹏飞. 大功率光纤激光研究进展与分析 [C]. 威 海: 先进高功率高能激光技术与应用研讨会, 2017. Liu Z J, Zhou P, Ma P F. Research progress and analysis of high power optical fiber laser [C]. Weihai: Seminar on Advanced High Power High Energy Laser Technology and Application, 2017.
Liu Z J, Zhou P, Ma P F. Research progress and analysis of high power optical fiber laser [C]. Weihai: Seminar on Advanced High Power High Energy Laser Technology and Application, 2017. Chinese.

[18] 陈晓龙, 楼凤光, 何宇, 等. 高效率全国产化10 kW光纤激光器 [J]. 光学学报, 2019, 39(3): 415–417. Chen X L, Lou F G, He Y, et al. Home-made 10 kW fiber laser with high efficiency [J]. Acta Optical Sinica, 2019, 39(3): 415– 417.
Chen X L, Lou F G, He Y, et al. Home-made 10 kW fiber laser with high efficiency [J]. Acta Optical Sinica, 2019, 39(3): 415– 417. Chinese. 链接1

相关研究