期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2020年 第22卷 第3期 doi: 10.15302/J-SSCAE-2020.03.009

金属激光增材制造技术发展研究

1. 中国航发北京航空材料研究院,北京 100095;

2. 中国航空发动机集团有限公司,北京 100097

资助项目 :中国工程院咨询项目“我国激光技术与应用 2035 发展战略研究” (2018-XZ-27) 收稿日期: 2020-03-25 修回日期: 2020-05-20 发布日期: 2020-05-27

下一篇 上一篇

摘要

金属激光增材制造(LAM)技术是支撑航空、航天、医疗等领域智能制造的关键基础技术。本文以问卷与现场调研为主、辅以文献查阅方法,对国内外金属LAM 技术研究和应用的现状与趋势进行系统梳理,总结国外发展经验与启示,分析国内技术发展面临的差距,针对性提出我国LAM 技术发展策略,以期为国家科技与产业发展战略、2035 年领域发展目标的制定提供支持。研究发现,金属LAM 技术的关注点仍为组织性能调控,但形状控制研究相对缺乏;为满足高质量制造的亟需,相关设备的过程监控功能获得高度重视;为提升高价值零件的制造能力与效率,增减材复合加工设备成为新增研发热点;金属LAM 产业的良性发展,需要实施包括材料、工艺、设备、验证、标准、人员培训在内的全产业链整合。研究建议,在夯实研究基础的同时,充分发挥材料基因组技术的作用,加强核心器件自主研发和装备集成的技术研究,稳步推进金属LAM技术的工程化普及应用。

参考文献

[ 1 ] 田宗军, 顾冬冬, 沈理达, 等. 激光增材制造技术在航空航天领 域的应用与发展 [J]. 航空制造技术, 2015, 58(11): 41–45. Tian Z J, Gu D D, Shen L D, et al. Application and development of laser additive manufacturing technology in aeronautics and astronautics [J]. Aeronautical Manufacturing Technology, 2015, 58(11): 41–45.
Tian Z J, Gu D D, Shen L D, et al. Application and development of laser additive manufacturing technology in aeronautics and astronautics [J]. Aeronautical Manufacturing Technology, 2015, 58(11): 41–45. Chinese. 链接1

[ 2 ] 林鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术 [J]. 中国材料进展, 2015, 34(9): 684–688. Lin X, Huang W D. High performance metal additive manufacturing technology applied in aviation field [J]. Materials China, 2015, 34(9): 684–688.
Lin X, Huang W D. High performance metal additive manufacturing technology applied in aviation field [J]. Materials China, 2015, 34(9): 684–688. Chinese. 链接1

[ 3 ] 闫雪, 阮雪茜. 增材制造技术在航空发动机中的应用及发展 [J]. 航空制造技术, 2016, 59(21): 70–75. Yan X, Ruan X Q. Application and development of additive manufacturing technology in aeroengine [J]. Aeronautical Manufacturing Technology, 2016, 59(21): 70–75.
Yan X, Ruan X Q. Application and development of additive manufacturing technology in aero engine [J]. Aeronautical Manufacturing Technology, 2016, 59(21): 70–75. Chinese. 链接1

[ 4 ] 董鹏, 梁晓康, 赵衍华, 等. 激光增材制造技术在航天构件整体 化轻量化制造中的应用现状与展望 [J]. 航天制造技术, 2018 (1): 7–11. Dong P, Liang X K, Zhao Y H, et al. Research status of laser additive manufacturing in integrity and lightweight [J]. Aerospace Manufacturing Technology, 2018 (1): 7–11.
Dong P, Liang X K, Zhao Y H, et al. Research status of laser additive manufacturing in integrity and lightweight [J]. Aerospace Manufacturing Technology, 2018 (1): 7–11. Chinese. 链接1

[ 5 ] Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition [J]. Acta Materialia, 2015, 85: 74–84. 链接1

[ 6 ] Edwards P, Ramulu M. Fatigue performance evaluation of selective laser melted Ti-6Al-4V [J]. Materials Science and Engineering A, 2014, 598(2): 327–337. 链接1

[ 7 ] 陈伟, 陈玉华, 毛育青. 铝合金增材制造技术研究进展 [J]. 精密 成形工程, 2017, 9(5): 214–219. Chen W, Chen Y H, Mao Y Q. Research progress in additive manufacturing technology of aluminum alloy [J]. Journal of Netshape Forming Engineering, 2017, 9(5): 214–219.
Chen W, Chen Y H, Mao Y Q. Research progress in additive manufacturing technology of aluminum alloy [J]. Journal of Netshape Forming Engineering, 2017, 9(5): 214–219. Chinese. 链接1

[ 8 ] Carter L N, Essa K, Attallah M M. Optimisation of selective laser melting for a high temperature Ni-superalloy [J]. Rapid Prototyping Journal, 2015, 21(4): 423–432. 链接1

[ 9 ] Gäumann M, Bezencon C, Canalis P, et al. Single-crystal laser deposition of superalloys: Processing–microstructure maps [J]. Acta Materialia, 2001, 49(6): 1051–1062. 链接1

[10] 戴煜, 李礼. 浅析激光选区熔化增材制造技术产业链现状及存 在的若干问题 [J]. 新材料产业, 2017 (10): 35–38. Dai Y, Li L. A brief analysis of the status and problems with the industrial chain of additive manufacturing by selective laser melting [J]. Advanced Materials Industry, 2017 (10): 35–38.
Dai Y, Li L. A brief analysis of the status and problems with the industrial chain of additive manufacturing by selective laser melting [J]. Advanced Materials Industry, 2017 (10): 35–38. Chinese. 链接1

[11] 杨强, 鲁中良, 黄福享, 等. 激光增材制造技术的研究现状及发 展趋势 [J]. 航空制造技术, 2016, 59(12): 26–31. Yang Q, Lu Z L, Huang F X, et al. Research on status and development trend of laser additive manufacturing [J]. Aeronautical Manufacturing Technology, 2016, 59(12): 26–31.
Yang Q, Lu Z L, Huang F X, et al. Research on status and development trend of laser additive manufacturing [J]. Aeronautical Manufacturing Technology, 2016, 59(12): 26–31. Chinese. 链接1

[12] 陈玮, 李志强. 航空钛合金增材制造的机遇和挑战 [J]. 航空制 造技术, 2018, 61(10): 30–37. Chen W, Li Z Q. Additive manufacturing of aerospace titanium alloys: Opportunities and challenges [J]. Aeronautical Manufacturing Technology, 2018, 61(10): 30–37.
Chen W, Li Z Q. Additive manufacturing of aerospace titanium alloys: Opportunities and challenges [J]. Aeronautical Manufacturing Technology, 2018, 61(10): 30–37. Chinese. 链接1

[13] 赵霄昊, 左振博, 韩志宇, 等. 粉末钛合金3D打印技术研究进展 [J]. 材料导报, 2016, 30(12): 121–127. Zhao X H, Zuo Z B, Han Z Y, et al. A review on powder titanium alloy 3D printing technology [J]. Materials Reports, 2016, 30(12): 121–127.
Zhao X H, Zuo Z B, Han Z Y, et al. A review on powder titanium alloy 3D printing technology [J]. Materials Reports, 2016, 30(12): 121–127. Chinese. 链接1

[14] 王迪, 钱泽宇, 窦文豪, 等. 激光选区熔化成形高温镍基合金研 究进展 [J]. 航空制造技术, 2018, 61(10): 49–60, 67. Wang D, Qian Z Y, Dou W H, et al. Research progress on selective laser melting of nickel based superalloy [J]. Aeronautical Manufacturing Technology, 2018, 61(10): 49–60, 67.
Wang D, Qian Z Y, Dou W H, et al. Research progress on selective laser melting of nickel based superalloy [J]. Aeronautical Manufacturing Technology, 2018, 61(10): 49–60, 67. Chinese. 链接1

[15] Cloots M, Uggowitzer P J, Wegener K. Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using gaussian and doughnut profiles [J]. Materials & Design, 2016, 89: 770–784. 链接1

[16] Tomus D, Tian Y, Rometsch P A, et al. Influence of post heat treatments on anisotropy of mechanical behaviour and microstructure of hastelloy-X parts produced by selective laser melting [J]. Materials Science & Engineering A, 2016, 667: 42–53. 链接1

[17] Carroll B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing [J]. Acta Materialia, 2015, 87: 309–320. 链接1

[18] Qiu C L, Ravi G A, Dance C, et al. Fabrication of large Ti-6Al- 4V structures by direct laser deposition [J]. Journal of Alloys and Compounds, 2015, 629: 351–361. 链接1

[19] Kobryn P A, Semiatin S L. The laser additive manufacture of Ti- 6Al-4V [J]. JOM: the Journal of the Minerals Metals and Materials Society, 2001, 53(9): 40–42. 链接1

[20] 王华明. 高性能金属构件增材制造技术开启国防制造新篇章 [J]. 国防制造技术, 2013 (3): 5–7. Wang H M. Additive manufacturing of high-performance metallic structures opens a new page of manufacturing for the national defense industry [J]. Defense Manufacturing Technology, 2013 (3): 5–7.
Wang H M. Additive manufacturing of high-performance metallic structures opens a new page of manufacturing for the national defense industry [J]. Defense Manufacturing Technology, 2013 (3): 5–7. Chinese. 链接1

相关研究