期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2020年 第22卷 第3期 doi: 10.15302/J-SSCAE-2020.03.014

空间激光通信技术发展现状及展望

长春理工大学空间光电技术国家地方联合工程研究中心,长春 130022

资助项目 :中国工程院咨询项目“我国激光技术与应用 2035 发展战略研究”(2018-XZ-27);国家自然科学基金项目“基于锁模掺钬光纤激光器的空间高速信息传输特性研究”(61975021) 收稿日期: 2020-03-12 修回日期: 2020-05-11 发布日期: 2020-05-28

下一篇 上一篇

摘要

空间激光通信技术是未来空间宽带信息传输的主要通信技术,具有带宽高、传输快速便捷及成本低的优势,是解决信息传输“最后一千米”的最佳选择。本文旨在系统把握空间激光通信技术的发展脉络,系统梳理了国内外空间激光通信技术在星地、星间、空地、空空等链路的研究与试验验证的发展情况,总结了激光通信技术在捕获跟踪、通信收发、大气补偿和光机设计等方向的关键技术研究热点。在此基础上,面向未来需求,归纳了空间激光通信技术在高速率、网络化、多用途、一体化、多谱段5 个方面的发展趋势。为进一步推动空间激光通信技术研究和产业化的发展,本文从实施基础研究计划、重视核心元器件研发、积极参与国际技术标准的制定以及引导相关产业发展4 个方面提出了发展建议,以期更好地促进我国空间激光通信技术的成果转化和应用。

图片

图 1

图 2

参考文献

[ 1 ] 姜会林, 安岩, 张雅琳, 等. 空间激光通信现状、发展趋势及关键 技术分析 [J]. 飞行器测控学报, 2015, 34(3): 207-217. Jiang H L, An Y, Zhang Y L, et al. Analysis of the status quo, development trend and key technologies of space laser communication [J]. Journal of spacecraft TT & C Technology, 2015, 34(3): 207-217.
Jiang H L, An Y, Zhang Y L, et al. Analysis of the status quo, development trend and key technologies of space laser communication [J]. Journal of spacecraft TT & 217. Chinese.-C Technology, 2015, 34(3): 207 链接1

[ 2 ] 高铎瑞, 李天伦, 孙悦, 等. 空间激光通信最新进展与发展趋势 [J]. 中国光学. 2018, 11(6): 901-913. Gao D R, Li T L, Sun Y, et al. Latest developments and trends of space laser communication [J]. Chinese Optics, 2018, 11(6): 901-913.
Gao D R, Li T L, Sun Y, et al. Latest developments and trends of space laser communication [J]. Chinese Optics, 2018, 11(6): 913. Chinese.-901 链接1

[ 3 ] 杨乾远, 孙晖, 马拥华, 等.5G基站前传和中传的无线光通信方 案设计 [J].光通信技术, 2019, 43(9): 23-26. Yang Q Y, Sun H, Ma Y H, et al. Design of free space optical communication scheme for forward and intermediate transmission of 5G base station [J]. Optical Communication Technology, 2019, 43(9): 23-26.
Yang Q Y, Sun H, Ma Y H, et al. Design of free space optical communication scheme for forward and intermediate transmission 26. Chinese.-of 5G base station [J]. Optical Communication Technology, 2019, 43(9): 23 链接1

[ 4 ] 姜会林, 江伦, 宋延嵩, 等. 一点对多点同时空间激光通信光学 跟瞄技术研究 [J]. 中国激光, 2015, 42(4): 1-9. Jiang H L, Jiang L, Song Y S, et al. Research of optical and apt technology in one-point to multi-point simultaneous space laser communication system [J]. Chinese Journal of Lasers, 2015, 42(4): 1-9.
Jiang H L, Jiang L, Song Y S, et al. Research of optical and apt technology in one-point to multi-point simultaneous space laser 9. Chinese.-communication system [J]. Chinese Journal of Lasers, 2015, 42(4): 1 链接1

[ 5 ] 姜会林, 付强, 赵义武, 等. 空间信息网络与激光通信发展现状 及趋势 [J]. 物联网学报, 2019, 3(2): 1-8. Jiang H L, Fu Q, Zhao Y W, et al. Development status and trend of space information network and laser communication [J]. Chinese Journal on Internet of Things, 2019, 3(2): 1-8.
Jiang H L, Fu Q, Zhao Y W, et al. Development status and trend of space information network and laser communication [J]. 8. Chinese.-Chinese Journal on Internet of Things, 2019, 3(2): 1 链接1

[ 6 ] Grein M E, Kerman A J, Dauler E A, et al. Design of a groundbased optical receiver for the lunar laser communications demonstration [C]. Santa Monica: 2011 International Conference on Space Optical Systems and Applications (ICSOS), 2011. 链接1

[ 7 ] Boroson D M, Robinson B S, Burianek D A, et al. Overview and status of the lunar laser communications demonstration [C]. Society of Photo-Optical Instrumentation Engineers, 2012. 链接1

[ 8 ] The Aerospace Corporation of El Segundo, California. Update on Optical communications and sensor demonstration (OCSD) [EB/ OL]. (2017-11-02)[2020-05-06]. https://www.nasa.gov/feature/ ocsd. 链接1

[ 9 ] Fields R, Kozlowski D, Yura H, et al. 5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station [C]. Santa Monica: 2011 International Conference on Space Optical Systems and Applications (ICSOS), 2011. 链接1

[10] Seel S, Kämpfner H, Heine F, et al. Space to ground bidirectional optical communication link at 5.6 Gbps and EDRS connectivity outlook [C]. Big Sky: 2011 Aerospace Conference, 2011. 链接1

[11] Tröndle D, Pimentel P M, Rochow C, et al. Alphasat-Sentinel-1A optical inter-satellite links: Run-up for the European data relay satellite system [C]. Society of Photo-Optical Instrumentation Engineers, 2016. 链接1

[12] Arimoto Y, Toyoshima M, Toyoda M, et al. Preliminary result on laser communication experiment using Engineering Test SatelliteVI (ETS-VI) [C]. San Jose: Free-Space Laser Communication Technologies VII, 1995. 链接1

[13] Jono T, Takayama Y, Ohinata K, et al. Demonstrations of ARTEMIS-OICETS inter-satellite laser communications [C]. San Diego: Aiaa International Communications Satellite Systems Conference, 2006. 链接1

[14] Carrasco-Casado A, Takenaka H, Kolev D, et al. LEO-toground optical communications using SOTA (Small Optical TrAnsponder) —Payload verification results and experiments on space quantum communications [J]. Acta Astronautica, 2017, 139: 377-384.
Carrasco-Casado A, Takenaka H, Kolev D, et al. LEO-to ground optical communications using SOTA (Small Optical TrAnsponder) —Payload verification results and experiments on space quantum communications [J]. Acta Astronautica, 2017, 384.-139: 377 680. Chinese.- 链接1

[15] 吴从均, 颜昌翔, 高志良, 等. 空间激光通信发展概述 [J]. 中国 光学, 2013, 6(5): 670-680. Wu C J, Yan C X, Gao Z L, et al. Overview of space laser communications [J]. Chinese Optics, 2013, 6(5): 670-680.
Wu C J, Yan C X, Gao Z L, et al. Overview of space laser communications [J]. Chinese Optics, 2013, 6(5): 670 链接1

[16] 王岭, 陈曦, 董峰. 空间激光通信光端机发展水平与发展趋势 [J]. 长春理工大学学报(自然科学版), 2016, 39(2): 39-45. Wang L, Chen X, Dong F. Development level and trend for space laser communication optical transceiver [J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2016, 39(2): 39-45.
Wang L, Chen X, Dong F. Development level and trend for space laser communication optical transceiver [J]. Journal of 45. Chinese.-Changchun University of Science and Technology (Natural Science Edition), 2016, 39(2): 39 链接1

[17] 吴应明, 刘兴, 罗广军, 等. 空间光通信网络技术的研究进展及 架构体系 [J]. 光通信技术, 2017, 11(12): 46-49. Wu Y M, Liu X, Luo G J, et al. Research progress and structure system of space optical communication network technology [J]. Optical Communication Technology, 2017, 11(12): 46-49.
Wu Y M, Liu X, Luo G J, et al. Research progress and structure system of space optical communication network technology 49. Chinese.-[J]. Optical Communication Technology, 2017, 11(12): 46 链接1

[18] 任建迎, 孙华燕, 张来线, 等. 空间激光通信发展现状及组网新 方法 [J]. 激光与红外, 2019, 49(2): 143-150. Ren J Y, Sun H Y, Zhang L X, et al. Development status of space laser communication and new method of networking [J]. Laser and Infrared, 2019, 49(2): 143-150.
Ren J Y, Sun H Y, Zhang L X, et al. Development status of space laser communication and new method of networking [J]. 150. Chinese.-Laser and Infrared, 2019, 49(2): 143 链接1

[19] 王旭. 实践十三号卫星成功发射开启中国通信卫星高通量时代 [J]. 中国航天, 2017 (5): 13. Wang X. The successful launch of Shijian-13 satellite opens the high throughput era of China’s communication satellite [J]. Aerospace China, 2017 (5): 13.
Wang X. The successful launch of Shijian-13 satellite opens the high throughput era of China’s communication satellite [J]. Aerospace China, 2017 (5): 13. Chinese. 链接1

[20] 陈纯毅, 杨华民, 姜会林, 等. 大气光通信中大孔径接收性能分 析与孔径尺寸选择 [J]. 中国激光, 2009, 36(11): 2957-2961. Chen C Y, Yang H M, Jiang H L, et al. Performance analysis of large-aperture receiving and selection of aperture size in atmospheric optical communications [J]. Chinese Journal of Lasers, 2009, 36(11): 2957-2961.
Chen C Y, Yang H M, Jiang H L, et al. Performance analysis of large-aperture receiving and selection of aperture size in 2961. Chinese.-atmospheric optical communications [J]. Chinese Journal of Lasers, 2009, 36(11): 2957 链接1

[21] Zhang X M, Wang T S, Chen J D, et al. Scintillation index reducing based on wide-spectral mode-locking fiber laser carriers in a simulated atmospheric turbulent channel [J]. Optics Letters, 2018, 43 (14): 3421-3424.
Zhang X M, Wang T S, Chen J D, et al. Scintillation index reducing based on wide-spectral mode-locking fiber laser carriers 3424.-in a simulated atmospheric turbulent channel [J]. Optics Letters, 2018, 43 (14): 3421 链接1

[22] Chen J D, Wang T S, Zhang X M, et al. Free-space transmission system in a tunable simulated atmospheric turbulence channel using a high-repetition-rate broadband fiber laser [J]. Applied Optics, 2019, 58 (10): 2635-2640.
Chen J D, Wang T S, Zhang X M, et al. Free-space transmission system in a tunable simulated atmospheric turbulence channel 2640.-using a high-repetition-rate broadband fiber laser [J]. Applied Optics, 2019, 58 (10): 2635 链接1

[23] 付强, 姜会林, 王晓曼, 等. 空间激光通信研究现状及发展趋势 [J]. 中国光学, 2012, 5(2): 116-125. Fu Q, Jiang H L, Wang X M, et al. Research status and development trend of space laser communication [J]. Chinese Optics, 2012, 5(2): 116-125.
Fu Q, Jiang H L, Wang X M, et al. Research status and development trend of space laser communication [J]. Chinese Optics, 125. Chinese.-2012, 5(2): 116 链接1

[24] Cvijetic N, Qian D Y, Yu J J, et al. 100 Gb/s per-channel freespace optical transmission with coherent detection and MIMO processing [C]. Vienna: 2009 35th European Conference on Optical Communication, 2009. 链接1

[25] Huang H, Xie G D, Yan Y, et al. 100 Tb/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength [J]. Optics Letters, 2014, 39(2): 197-200.
Huang H, Xie G D, Yan Y, et al. 100 Tb/s free-space data link enabled by three-dimensional multiplexing of orbital angular 200.-momentum, polarization, and wavelength [J]. Optics Letters, 2014, 39(2): 197 链接1

[26] Esmail M A, Ragheb A, Fathallah H, et al. Experimental demonstration of outdoor 2.2 Tbps super-channel FSO transmission system [C]. Kuala Lumpur: 2016 IEEE International Conference on Communications Workshops (ICC), 2016. 链接1

[27] Esmail M A, Ragheb A, Fathallah H, et al. Investigation and demonstration of high speed full-optical hybrid FSO/fiber communication system under light sand storm condition [J]. IEEE Photonics Journal, 2016, 9(1): 1-12.
Esmail M A, Ragheb A, Fathallah H, et al. Investigation and demonstration of high speed full-optical hybrid FSO/fiber 12.-communication system under light sand storm condition [J]. IEEE Photonics Journal, 2016, 9(1): 1 链接1

[28] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing [J]. Nature photonics, 2012, 6(7): 488-496.
Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing 496.-[J]. Nature photonics, 2012, 6(7): 488 链接1

[29] Wang J, Li S, Luo M, et al. N-dimentional multiplexing link with 1.036-Pb/s transmission capacity and 112.6-b/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM polmuxed 26 OAM modes [C]. Cannes: 2014 European Conference on Optical Communication (ECOC), 2014. 链接1

[30] Wang J, Liu J, Lv X, et al. Ultra-high 435-b/s/Hz spectral efficiency using N-dimentional multiplexing and modulation link with pol-muxed 52 orbital angular momentum (OAM) modes carrying Nyquist 32-QAM signals [C]. Valencia: 2015 European Conference on Optical Communication (ECOC), 2015. 链接1

[31] Gao S M, Feng S L, Wu Z H, et al. 120 Gb/s high-speed WDMQPSK free-space optical transmission through a 1-km atmospheric channel [J]. Electronics Letters, 2018, 54 (18): 1082–1084. 链接1

[32] Liu X, Wang T, Zhang X, et al. 128 Gb/s free-space laser transmission performance in a simulated atmosphere channel with adjusted turbulence [J]. IEEE Photonics Journal, 2018, 10(2): 1-10.
Liu X, Wang T, Zhang X, et al. 128 Gb/s free-space laser transmission performance in a simulated atmosphere channel with 10.-adjusted turbulence [J]. IEEE Photonics Journal, 2018, 10(2): 1 链接1

[33] Liu X, Wang T, Lin P, et al. Up to 384 Gbit/s based on dense wavelength division multiplexing of 100-GHz channel spacing free space laser transmission performance in a simulated atmosphere channel with adjusted turbulence [J]. Optical Engineering, 2018, 57(10): 1-6.
Liu X, Wang T, Lin P, et al. Up to 384 Gbit/s based on dense wavelength division multiplexing of 100-GHz channel spacing free space laser transmission performance in a simulated atmosphere channel with adjusted turbulence [J]. Optical Engineering, 6.-2018, 57(10): 1 链接1

[34] 姜会林, 胡源, 丁莹, 等. 空间激光通信组网光学原理研究 [J]. 光 学学报, 2012, 32(10): 1-5. Jiang H L, Hu Y, Ding Y, et al. Optical principle research of space laser communication network [J]. Acta Optica Sinica, 2012, 32(10): 1-5.
Jiang H L, Hu Y, Ding Y, et al. Optical principle research of space laser communication network [J]. Acta Optica Sinica, 2012, 5. Chinese.-32(10): 1 链接1

[35] 吴伟仁, 于登云. 深空探测发展与未来关键技术 [J]. 深空探测 学报, 2014, 1(1): 5-17. Wu W R, Yu D Y. Development of deep space exploration and its future key technologies [J]. Journal of Deep Space Exploration, 2014, 1(1): 5-17.
Wu W R, Yu D Y. Development of deep space exploration and its future key technologies [J]. Journal of Deep Space 17. Chinese.-Exploration, 2014, 1(1): 5 链接1

[36] 于登云, 吴学英, 吴伟仁. 我国探月工程技术发展综述 [J]. 深空 探测学报, 2016, 3(4): 307-314. Yu D Y, Wu X Y, Wu W R. Review of technology development for Chinese lunar exploration program [J]. Journal of Deep Space Exploration, 2016, 3(4): 307-314.
Yu D Y, Wu X Y, Wu W R. Review of technology development for Chinese lunar exploration program [J]. Journal of Deep 314. Chinese.-Space Exploration, 2016, 3(4): 307 链接1

[37] Khalighi M A, Gabriel C, Hamza T, et al. Underwater wireless optical communication: Recent advances and remaining challenges [C]. Graz: 2014 16th International Conference on Transparent Optical Networks (ICTON), 2014. 链接1

[38] Boroson D M, Robinson B S, Murphy D V, et al. Overview and results of the lunar laser communication demonstration [C]. Washington: Society of Photo-Optical Instrumentation Engineers, 2014. 链接1

[39] 刘向南, 李英飞, 向程勇, 等. 激光测距通信一体化技术研究及 深空应用探索 [J]. 深空探测学报, 2018, 5(2): 147-153, 167. Liu X N, Li Y F, Xiang C Y, et al. Study on integrated technique of laser ranging and communication and its applications in deep space [J]. Journal of Deep Space Exploration, 2018, 5(2): 147- 153, 167.
Liu X N, Li Y F, Xiang C Y, et al. Study on integrated technique of laser ranging and communication and its applications in 153, 167. Chinese.-deep space [J]. Journal of Deep Space Exploration, 2018, 5(2): 147 链接1

[40] 姜会林, 张国玉, 付强, 等. 空间光电技术与光学系统 [M]. 北京: 科学出版社, 2015. Jiang H L, Zhang G Y, Fu Q, et al. Space photoelectric technology and optical system [M]. Beijing: China Science Publishing & Media Ltd., 2015.
Jiang H L, Zhang G Y, Fu Q, et al. Space photoelectric technology and optical system [M]. Beijing: China Science Publishing & Media Ltd., 2015. Chinese.

[41] Ding H, Chen G, Majumdar A K, et al. Modeling of non-line-ofsight ultraviolet scattering channels for communication [J]. IEEE Journal on Selected Areas in Communications, 2009, 27(9): 1535- 1544.
Ding H, Chen G, Majumdar A K, et al. Modeling of non-line-of sight ultraviolet scattering channels for communication [J]. 1544.-IEEE Journal on Selected Areas in Communications, 2009, 27(9): 1535 链接1

[42] 吴秋宇, 林长星, 陆彬, 等. 21 km, 5 Gbps, 0.14 THz无线通信系 统设计与试验 [J]. 强激光与粒子束, 2017, 29(6): 1-4. Wu Q Y, Lin C X, Lu B, et al. Design and tests of 21 km, 5 Gbps, 0.14 THz wireless communication system [J]. High Power Laser and Particle Beams, 2017, 29(6): 1-4.
Wu Q Y, Lin C X, Lu B, et al. Design and tests of 21 km, 5 Gbps, 0.14 THz wireless communication system [J]. High Power 4. Chinese.-Laser and Particle Beams, 2017, 29(6): 1 链接1

相关研究