期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2020年 第22卷 第3期 doi: 10.15302/J-SSCAE-2020.03.017

神经退行性疾病的光学疗法及其应用展望

1. 北京大学跨学部生物医学工程系,北京 100191;

2. 上海交通大学生物医学工程学院Med-X 研究院,上海 200030;

3. 深圳大学物理与光电工程学院,广东深圳 518061;

4. 华南师范大学生物光子学研究院暨激光生命科学教育部重点实验室,广州 510631

资助项目 :中国工程院咨询项目“我国激光技术与应用2035 发展战略研究”(2018-XZ-27) 收稿日期: 2020-03-25 修回日期: 2020-04-28

下一篇 上一篇

摘要

神经退行性疾病是由神经元结构或功能逐渐丧失导致认知及运动障碍的一类不可逆损伤性疾病,目前尚无安全有效的治疗方法。探索无创的物理治疗手段在神经退行性疾病中的应用潜力,对疾病缓解与有效控制具有重大的意义。光学疗法是利用光线与组织的相互作用,通过光化学或光物理反应治疗疾病和促进机体康复的方法,具有精准性和微创性的技术特点。其中,弱光治疗作为一种无创光疗类型,在促进伤口愈合、缓解疼痛、炎症消退、组织再生等方面已广泛应用于临床。临床研究也证实弱光治疗能够有效改善神经退行性疾病病患的病理症状,作为一种无创物理疗法,弱光治疗为神经退行性疾病的缓解和有效控制提供了非常具有前景的新方向。本文综述了弱光治疗在神经退行性疾病中的研究进展,并结合光电子技术的发展展望其应用前景,研究提出:需阐明弱光作用机理及量效关系,开发新型弱光治疗技术,完善临床验证体系及评价指标,尽快造福病患,服务社会。

图片

图 1

图 2

参考文献

[ 1 ] Yun S H, Kwok S J J. Light in diagnosis, therapy and surgery [J]. Nature Biomedical Engineering, 2017, 1(1): 1–16. 链接1

[ 2 ] Hong N. Photobiomodulation as a treatment for neurodegenerative disorders: Current and future trends [J]. Biomedical Engineering Letters, 2019, 9(3): 359–366.

[ 3 ] Hamblin M R. Shining light on the head: Photobiomodulation for brain disorders [J]. BBA Clinical, 2016, 6: 113–124. 链接1

[ 4 ] Hamblin M R. Mechanisms and mitochondrial redox signaling in photobiomodulation [J]. Photochemistry and Photobiology, 2018, 94(2): 199–212. 链接1

[ 5 ] Meng C, He Z, Xing D. Low-level laser therapy rescues dendrite atrophy via upregulating BDNF expression: Implications for Alzheimer’s disease [J]. Journal of Neuroscience, 2013, 33(33): 13505–13517. 链接1

[ 6 ] Zhang H, Wu S, Xing D. Inhibition of Aβ25–35-induced cell apoptosis by Low-power-laser-irradiation (LPLI) through promoting Akt-dependent YAP cytoplasmic translocation [J]. Cellular Signalling, 2012, 24(1): 224–32. 链接1

[ 7 ] Liang J, Liu L, Xing D. Photobiomodulation by low-power laser irradiation attenuates Aβ-induced cell apoptosis through the Akt/GSK3β/β-catenin pathway [J]. Free Radical Biology and Medicine, 2012, 53(7): 1459–1467. 链接1

[ 8 ] Song S, Zhou F, Chen W R. Low-level laser therapy regulates microglial function through Src-mediated signaling pathways: Implications for neurodegenerative diseases [J]. Journal of Neuroinflammation, 2012, 9(1): 219. 链接1

[ 9 ] Birks J S. Cholinesterase inhibitors for Alzheimer’s disease [J]. Cochrane database of systematic reviews, 2006, 1(1): CD005593. 链接1

[10] Kishi T, Matsunaga S, Iwata N. The effects of memantine on behavioral disturbances in patients with Alzheimer’s disease: A meta-analysis [J]. Neuropsychiatric Disease and Treatment, 2017, 13: 1909. 链接1

[11] Taboada L D, Yu J, El-Amouri S, et al. Transcranial laser therapy attenuates amyloid-β peptide neuropathology in amyloid-β protein precursor transgenic mice [J]. Journal of Alzheimer’s Disease, 2011, 23(3): 521–535. 链接1

[12] Tao L, Wang X, Zhou Q, et al. Near infra-red light treatment of Alzheimer’s disease [C]. Bellingham: International Society for Optics and Photonics, 2019. 链接1

[13] Purushothuman S, Johnstone D M, Nandasena C, et al. Photobiomodulation with near infrared light mitigates Alzheimer’s disease-related pathology in cerebral cortex–evidence from two transgenic mouse models [J]. Alzheimer’s Research & Therapy, 2014, 6(1): 2. 链接1

[14] Farfara D, Tuby H, Trudler D, et al. Low-level laser therapy ameliorates disease progression in a mouse model of Alzheimer’s disease [J]. Journal of Molecular Neuroscience, 2015, 55(2): 430–436. 链接1

[15] Comerota M M, Krishnan B, Taglialatela G. Near infrared light decreases synaptic vulnerability to amyloid beta oligomers [J]. Scientific Reports, 2017, 7(1): 1–11. 链接1

[16] Lu Y, Wang R, Dong Y, et al. Low-level laser therapy for beta amyloid toxicity in rat hippocampus [J]. Neurobiology of Aging, 2017, 49: 165–182. 链接1

[17] Grillo S L, Duggett N A, Ennaceur A, et al. Non-invasive infra-red therapy (1072 nm) reduces β-amyloid protein levels in the brain of an Alzheimer’s disease mouse model, TASTPM [J]. Journal of Photochemistry and Photobiology B: Biology, 2013, 123: 13–22. 链接1

[18] Zinchenko E, Navolokin N, Shirokov A, et al. Pilot study of transcranial photobiomodulation of lymphatic clearance of betaamyloid from the mouse brain: Breakthrough strategies for nonpharmacologic therapy of Alzheimer’s disease [J]. Biomedical Optics Express, 2019, 10(8): 4003–4017.

[19] Zhang Y, Wang F, Luo X, et al. Cognitive improvement by photic stimulation in a mouse model of Alzheimer’s disease[J]. Current Alzheimer Research, 2015, 12(9): 860–869. 链接1

[20] Iaccarino H F, Singer A C, Martorell A J, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia [J]. Nature, 2016, 540(7632): 230–235. 链接1

[21] Adaikkan C, Middleton S J, Marco A, et al. Gamma entrainment binds higher-order brain regions and offers neuroprotection [J]. Neuron, 2019, 102(5): 929–943. 链接1

[22] Martorell A J, Paulson A L, Suk H-J, et al. Multi-sensory gamma stimulation ameliorates Alzheimer’s-associated pathology and improves cognition [J]. Cell, 2019, 177(2): 256–271, e22. 链接1

[23] 金丽英, 石秉霞, 周畅. 半导体激光疗法对轻度认知障碍病人 β-类淀粉样蛋白的影响 [J]. 青岛大学医学院学报, 2000, 36(3): 175–176. Jin L Y, Shi B X, Zhou C. The effect on serum amyloid β protein of patients with mild cognitive impairment after semiconductor laser therapy [J]. Journal of Qingdao University (Medical Sciences), 2000, 36(3): 175–176.
Jin L Y, Shi B X, Zhou C. The effect on serum amyloid β protein of patients with mild cognitive impairment after semiconductor laser therapy [J]. Journal of Qingdao University (Medical Sciences), 2000, 36(3): 175–176. Chinese. 链接1

[24] Arakelyan H S. Treatment of Alzheimer’s disease with a combination of laser, magnetic field and chromo light (colour) therapies: A double-blind controlled trial based on a review and overview of the etiological pathophysiology of Alzheimer’s disease [J]. Laser Therapy, 2005, 14(1): 19–28. 链接1

[25] Maksimovich I V. Dementia and cognitive impairment reduction after laser transcatheter treatment of Alzheimer’s disease [J]. World Journal of Neuroscience, 2015, 5(3): 189. 链接1

[26] Lim L. The potential of treating Alzheimer’s disease with intranasal light therapy [C]. Toronto: MedicLights Research Inc., 2013. 链接1

[27] Berman M H, Halper J P, Nichols T W, et al. Photobiomodulation with near infrared light helmet in a pilot, placebo controlled clinical trial in dementia patients testing memory and cognition [J]. Journal of Neurology and Neuroscience, 2017, 8(1): 176. 链接1

[28] Saltmarche A E, Naeser M A, Ho K F, et al. Significant improvement in cognition in mild to moderately severe dementia cases treated with transcranial plus intranasal photobiomodulation: case series report [J]. Photomedicine and Laser Surgery, 2017, 35(8): 432–441. 链接1

[29] Shaw V E, Peoples C, Spana S, et al. Patterns of cell activity in the subthalamic region associated with the neuroprotective action of near-infrared light treatment in MPTP-treated mice [J]. Parkinson’s Disease, 2012, 2012 : 296875. 链接1

[30] Moro C, Torres N, Massri N E, et al. Photobiomodulation preserves behaviour and midbrain dopaminergic cells from MPTP toxicity: Evidence from two mouse strains [J]. BMC Neuroscience, 2013, 14(1): 40. 链接1

[31] Massri N E, Johnstone D M, Peoples C L, et al. The effect of different doses of near infrared light on dopaminergic cell survival and gliosis in MPTP-treated mice [J]. International Journal of Neuroscience, 2016, 126(1): 76–87. 链接1

[32] Reinhart F, Massri N E, Chabrol C, et al. Intracranial application of near-infrared light in a hemi-parkinsonian rat model: The impact on behavior and cell survival [J]. Journal of Neurosurgery, 2016, 124(6): 1829–1841. 链接1

[33] Purushothuman S, Nandasena C, Johnstone D M, et al. The impact of near-infrared light on dopaminergic cell survival in a transgenic mouse model of parkinsonism [J]. Brain Research, 2013, 1535: 61–70. 链接1

[34] Reinhart F, Massri N E, Darlot F, et al. 810 nm near-infrared light offers neuroprotection and improves locomotor activity in MPTPtreated mice [J]. Neuroscience Research, 2015, 92: 86–90. 链接1

[35] Moro C, Massri N E, Torres N, et al. Photobiomodulation inside the brain: A novel method of applying near-infrared light intracranially and its impact on dopaminergic cell survival in MPTP-treated mice [J]. Journal of Neurosurgery, 2014, 120(3): 670–683. 链接1

[36] Darlot F, Moro C, Massri N E, et al. Near-infrared light is neuroprotective in a monkey model of Parkinson disease [J]. Annals of Neurology, 2016, 79(1): 59–75. 链接1

[37] Massri N E, Lemgruber A P, Rowe I J, et al. Photobiomodulationinduced changes in a monkey model of Parkinson’s disease: Changes in tyrosine hydroxylase cells and GDNF expression in the striatum [J]. Experimental Brain Research, 2017, 235(6): 1861–1874. 链接1

[38] Johnstone D M, El Massri N, Moro C, et al. Indirect application of near infrared light induces neuroprotection in a mouse model of parkinsonism—An abscopal neuroprotective effect [J]. Neuroscience, 2014, 274: 93–101. 链接1

[39] Kim B, Mitrofanis J, Stone J, et al. Remote tissue conditioning is neuroprotective against MPTP insult in mice [J]. Ibro Reports, 2018, 4: 14–17. 链接1

[40] Ganeshan V, Skladnev N V, Kim J Y, et al. Pre-conditioning with remote photobiomodulation modulates the brain transcriptome and protects against MPTP insult in mice [J]. Neuroscience, 2019, 400: 85–97. 链接1

[41] Santos L, Olmo-Aguado S D, Valenzuela P L, et al. Photobiomodulation in Parkinson’s disease: A randomized controlled trial [J]. Brain Stimulation, 2019, 12(3): 810. 链接1

[42] Willis G L, Boda J, Freelance C B. Polychromatic light exposure as a therapeutic in the treatment and management of Parkinson’s disease: A controlled exploratory trial [J]. Frontiers in Neurology, 2018, 9: 741. 链接1

[43] Paus S, Schmitz-Hübsch T, Wüllner U, et al. Bright light therapy in Parkinson’s disease: A pilot study [J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2007, 22(10): 1495–1498. 链接1

[44] Videnovic A, Klerman E B, Wang W, et al. Timed light therapy for sleep and daytime sleepiness associated with Parkinson disease: A randomized clinical trial [J]. Jama Neurology, 2017, 74(4): 411–418. 链接1

[45] Rutten S, Vriend C, Smit J H, et al. Bright light therapy for depression in Parkinson disease: A randomized controlled trial [J]. Neurology, 2019, 92(11): e1145–e1156. 链接1

[46] Gonzalez-Lima F, Barrett D W. Augmentation of cognitive brain functions with transcranial lasers [J]. Frontiers in Systems Neuroscience, 2014, 8: 36. 链接1

[47] Barrett D W, Gonzalez-Lima F. Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans [J]. Neuroscience, 2013, 230: 13–23. 链接1

[48] Jahan A, Nazari M A, Mahmoudi J, et al. Transcranial near-infrared photobiomodulation could modulate brain electrophysiological features and attentional performance in healthy young adults [J]. Lasers in Medical Science, 2019, 34(6): 1193–1200. 链接1

[49] Song P, Han T, Lin H, et al. Transcranial near-infrared stimulation may increase cortical excitability recorded in humans [J]. Brain Research Bulletin, 2020, 155: 155–158. 链接1

[50] Hart N S, Fitzgerald M. A new perspective on delivery of rednear-infrared light therapy for disorders of the brain [J]. Discovery Medicine, 2016, 22(120): 147–156. 链接1

相关研究