期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2021年 第23卷 第2期 doi: 10.15302/J-SSCAE-2021.02.005

全维可定义的天地协同组网架构与切片技术研究

战略支援部队信息工程大学,郑州 450002

资助项目 :国家重点研发计划“基于全维可定义的天地协同网络资源智能切片技术”(2020YFB1804803);中国工程院咨询项目“网络强国”(2020-ZD-14) 收稿日期: 2021-01-16 修回日期: 2021-02-22

下一篇 上一篇

摘要

面对未来网络对全维度空间泛在互联互通的信息服务需求,现有的卫星互联网基础架构及由此构建的技术体系在异构协同、资源高效、精准按需、稳定可靠等方面仍面临重大挑战。本文首先对我国卫星互联网技术发展需求进行分析研判,讨论了全球卫星互联网技术的发展现状和趋势;其次阐述了代表性的天地协同广域通信网络组网架构、全维可定义的网络节点;最后从网络智能切片、数据解析与转发、资源协调控制机制等方面,提出天地协同网络中面向业务特性的智能切片关键技术。研究建议:依托天地协同网络架构,以网络资源管理控制、网络智慧化、网络结构全维可定义等技术为支撑,突破业务所需的天地协同网络资源智能切片、全维可定义的数据报文灵活解析与转发、天地协同网络资源全局协调控制等关键技术;在国家层面加大对天地协同网络的政策支持力度,为天地协同网络资源全局动态优化技术创新和产业发展提供持续推动力。

图片

图 1

图 2

图 3

参考文献

[ 1 ] Ohlen P, Skubic B, Ghebretensae A, et al. Data plane and control architectures for 5G transport networks [C]. Valencia: 2015 European Conference on Optical Communication (ECOC), 2015. 链接1

[ 2 ] Ren J, Zhang N, Gao Y, et al. Guest editorial: Service-oriented Space–Air–Ground integrated networks [J]. IEEE Wireless Communications, 2020, 27(6): 10–11. 链接1

[ 3 ] 黄韬, 刘江, 汪硕, 等. 未来网络技术与发展趋势综述 [J]. 通信 学报, 2021, 42(1): 130–150. Huang T, Liu J, Wang S, et al. Survey of the future network technology and trend [J]. Journal on Communications, 2021, 42(1): 130–150. 链接1

[ 4 ] 沈学民, 承楠, 周海波, 等. 空天地一体化网络技术: 探索与展望 [J]. 物联网学报, 2020, 4(3): 3–19. Shen X M, Cheng N, Zhou H B, et al. Space–Air–Ground integrated networks: Review and prospect [J]. Chinese Journal on Internet of Things, 2020, 4(3): 3–19. 链接1

[ 5 ] Jiang C, Zhu X. Reinforcement learning based capacity management in multi-layer satellite networks [J]. IEEE Transactions on Wireless Communications, 2020, 19(7): 4685–4699. 链接1

[ 6 ] Hubenko V, Raines R, Mills R, et al. Improving the global information grid’s performance through satellite communications layer enhancements [J]. IEEE Communications Magazine, 2006, 44(11): 66–72. 链接1

[ 7 ] Hamdi M, Boudriga N, Obaidat M. Bandwidth-effective design of a satellite-based hybrid wireless sensor network for mobile target detection and tracking [J]. IEEE Systems Journal, 2008, 2(1): 74–82. 链接1

[ 8 ] Blumenthal S. Medium earth orbit Ka band satellite communications system [C]. San Diego: MILCOM 2013—2013 IEEE Military Communications Conference, 2013. 链接1

[ 9 ] Nishiyama H, Tada Y, Kato N, et al. Toward optimized traffic distribution for efficient network capacity utilization in twolayered satellite networks [J]. IEEE Transactions on Vehicular Technology, 2013, 62(3): 1303–1313. 链接1

[10] Conti M, Giordano S. Mobile ad hoc networking: Milestones, challenges, and new research directions [J]. IEEE Communications Magazine, 2014, 52(1): 85–96. 链接1

[11] Aalamifar F, Lampe L, Bavarian S, et al. WiMAX technology in smart distribution networks: Architecture, modeling, and applications [C]. Chicago: 2014 IEEE PES T&D Conference and Exposition, 2014. 链接1

[12] Ye J, Dang S, Shihada B, et al. Space-Air-Ground integrated networks: Outage performance analysis [J]. IEEE Transactions on Wireless Communications, 2020, 19(12): 7897–7912. 链接1

[13] Chandrasekharan S, Gomez K, Al-Hourani A, et al. Designing and implementing future aerial communication networks [J]. IEEE Communications Magazine, 2016, 54(5): 26–34. 链接1

[14] Liu J, Shi Y, Fadlullah Z, et al. Space–Air–Ground integrated network: A survey [J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2714–2741. 链接1

[15] Kato N, Fadlullah Z, Tang F, et al. Optimizing Space–Air–Ground integrated networks by artificial intelligence [J]. IEEE Wireless Communications, 2019, 26(4): 140–147. 链接1

[16] Du J, Jiang C, Wang J, et al. Machine learning for 6G wireless networks: Carrying forward enhanced bandwidth, massive access, and ultrareliable/low-latency service [J]. IEEE Vehicular Technology Magazine, 2020, 15(4): 122–134. 链接1

相关研究