《中国工程科学》 >> 2021年 第23卷 第2期 doi: 10.15302/J-SSCAE-2021.02.020
电解水制氢技术研究进展与发展建议
1. 中国科学院大连化学物理研究所,辽宁大连 116023;
2. 中国科学院燃料电池及复合电能源重点实验室,辽宁大连 116023;
3. 国网辽宁省电力有限公司电力科学研究院,沈阳 110004
下一篇 上一篇
摘要
随着日益增长的低碳减排需求,氢的绿色制取技术受到广泛重视,利用可再生能源进行电解水制氢是目前众多氢气来源方案中碳排放最低的工艺。本文梳理了氢能需求和规划的进展、电解水制氢的示范项目情况,重点分析了电解水制氢技术,涵盖技术分类、碱水制氢应用、质子交换膜(PEM)电解水制氢。研究认为,提升电催化剂活性、提高膜电极中催化剂的利用率、改善双极板表面处理工艺、优化电解槽结构,有助于提高 PEM 电解槽的性能并降低设备成本; PEM 电解水制氢技术的运行电流密度高、能耗低、产氢压力高,适应可再生能源发电的波动性特征、易于与可再生能源消纳相结合,是电解水制氢的适宜方案。结合氢储运与电解制氢的技术特征研判、我国输氢需求,提出发展建议:利用西北、西南、东北等区域丰富的可再生能源,通过电解水制氢产生高压氢;氢送入天然气管网,然后在用氢端从天然气管道取气、重整制氢,由此构成绿色制氢与长距离输送的系统解决方案。
关键词
电解水制氢 ; 可再生能源 ; 质子交换膜电解水制氢 ; 绿氢 ; 长距离输送
参考文献
[ 1 ] Fuel Cells and Hydrogen Joint Undertaking. Hydrogen roadmap Europe: A sustainable pathway for the European energy rransition [EB/OL]. (2019-02-11)[2020-08-15]. https://www.fch.europa.eu/ sites/default/files/Hydrogen%20Roadmap%20Europe_Report.pdf. 链接1
[ 2 ] Lewinski K A. NSTF Advances for PEM electrolysis – The effect of alloying on activity of NSTF electrolyzer catalysts and performance of NSTF based PEM electrolyzers [J]. ECS Transactions, 2015, 69(17): 893–917. 链接1
[ 3 ] Bender G, Dinh H N, Danilovic N, et al. HydroGEN: Lowtemperature electrolysis [EB/OL]. (2018-06-13)[2020-08- 15]. https://www.hydrogen.energy.gov/pdfs/review18/pd148_ bender_2018_o.pdf. 链接1
[ 4 ] Xu H. Ionomer dispersion impact on PEM fuel cell and electrolyzer performance and durability [EB/OL]. (2017-06-08) [2020-08-15]. https://www.hydrogen.energy.gov/pdfs/review17/ fc117_xu_2017_o.pdf. 链接1
[ 5 ] Siracusano S, Dijk N, Payne-Johnson E, et al. Nanosized IrOx and IrRuOx electrocatalysts for the O2 evolution reaction in PEM water electrolysers [J]. Applied Catalysis B: Environmental, 2015, 164: 488–495. 链接1
[ 6 ] Zhao S, Stocks A, Rasimick B, et al. Highly active, durable dispersed Iridium nanocatalysts for PEM water electrolyzers [J]. Journal of The Electrochemical Society, 2018, 165(2): 82–89. 链接1
[ 7 ] Liu D J, Chong L N, Wang H, et al. PGM-free OER catalysts for PEM electrolyzer [EB/OL]. (2019-05-01)[2020-08-15]. https:// www.hydrogen.energy.gov/pdfs/review19/p157_liu_2019_o.pdf. 链接1
[ 8 ] Hamdan M. Giner PEM electrolysis R & D webinar [EB/OL]. (2011-05-23)[2020-08-15]. https://www.energy.gov/sites/prod/ files/2014/03/f12/webinarslides052311_pemelectrolysis_hamdan. pdf. 链接1
[ 9 ] Ayers K E, Renner J N, Danilovic N, et al. Pathways to ultralow platinum group metal catalyst loading in proton exchange membrane electrolyzers [J]. Catalysis Today, 2016, 262: 121–132. 链接1
[10] Kang Z Y, Mo J K, Yang G Q, et al. Investigation of thin/ well-tunable liquid/gas diffusion layers exhibiting superior multifunctional performance in low-temperature electrolytic water splitting [J]. Energy & Environmental Science, 2017, 10(1): 166– 175. 链接1
[11] Lettenmeier P, Wang R, Abouatallah R, et al. Coated stainless steel bipolar plates for proton exchange membrane electrolyzers [J]. Journal of The Electrochemical Society, 2016, 163(11): 3119– 3124. 链接1
[12] Lettenmeier P, Wang R, Abouatallah R, et al. Low-cost and durable bipolar plates for proton exchange membrane electrolyzers [J]. Scientific Reports, 2017 (7): 1–12. 链接1
[13] Yang G Q, Mo J K, Kang Z Y, et al. Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting [J]. Applied Energy, 2018, 215: 202–210. 链接1
[14] Yang G Q, Yu S L, Mo J K, et al. Bipolar plate development with additive manufacturing and protective coating for durable and high-efficiency hydrogen production [J]. Journal of Power Sources, 2018, 396: 590–598. 链接1
[15] Toops T J, Brady M P, Zhang F Y, et al. Evaluation of nitrided titanium separator plates for proton exchange membrane electrolyzer cells [J]. Journal of Power Sources, 2014, 272(25): 954–960. 链接1
[16] Choe S, Lee B S, Cho M K, et al. Electrodeposited IrO2/Ti electrodes as durable and cost-effective anodes in high-temperature polymer-membrane-electrolyte water electrolyzers [J]. Applied Catalysis B: Environmental, 2017, 226: 289–294. 链接1
[17] Bertuccioli L, Chan A, Hart D, et al. Development water electrolysis in the European Union [EB/OL]. (2014-02-07)[2020- 08-15]. https://www.fch.europa.eu/sites/default/files/study%20 electrolyser_0-Logos_0.pdf. 链接1
[18] Sun S C, Shao Z G, Yu H M, et al. Investigations on degradation of the long-term proton exchange membrane water electrolysis stack [J]. Journal of Power Sources, 2014, 267: 515–520. 链接1
[19] Espinosa-Lopez M, Darras C, Poggi P, et al. Modelling and experimental validation of a 46 kW PEM high pressure water electrolyzer [J]. Renewable Energy, 2018, 119: 160–173. 链接1
[20] Isaac T. HyDeploy: The UK’s first Hydrogen blending deployment project [J]. Clean Energy, 2019, 3(2): 114–125. 链接1